
NDN, Technical Report NDN-0057. http://named-data.net/techreports.html
Revision 4: July 31, 2018

1

An Overview of Security Support in Named Data
Networking

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis, Yanbiao Li, Alexander Afanasyev,
Lixia Zhang

Abstract—This paper presents an overview of the security
mechanisms in the Named Data Networking (NDN) architecture
that have been developed over the past several years. NDN
changes the network communication model from the delivery
of packets between hosts identified by IP addresses to the
retrieval of named and secured data packets. Consequently, NDN
also fundamentally changes the approaches to network security.
Making named data the centerpiece of the architecture leads to
a new security framework that: (i) secures data directly, and
(ii) uses name semantics to enable applications to reason about
security, and to automate the use of cryptographic keys. In this
paper, we introduce NDN’s approach to security bootstrapping,
data authenticity, confidentiality, and availability.

Index Terms—Named Data Networking, Security

I. INTRODUCTION

Named Data Networking (NDN), a proposed Internet ar-
chitecture, changes the basic network communication model;
instead of delivering packets to receivers identified by IP
addresses, NDN lets consumers request desired data using
application-layer names. Naming data enables NDN to secure
data directly at network layer. This is done by making every
Data packet verifiable and, optionally, confidential.

In this paper, we provide an overview of NDN’s security
framework and illustrate the developed mechanisms with ex-
ample prototype realizations, showing how all the components
in the framework function together. We assume that readers
have some basic knowledge of cryptography, but is not nec-
essarily familiar with the NDN architecture.

The paper is organized as follows. Section II provides a
brief description of the NDN architecture and introduces an
example application, which will be used throughout the paper
to illustrate the use of various security mechanisms. Section III
states the goals of the NDN security design, identifies the
major challenges, and introduces the basic supporting compo-
nents of the solutions. Section IV describes the NDN security
bootstrapping process, and Sections V, VI, and VII explain
NDN’s current solutions to data authenticity, confidentiality,
and availability. Throughout this paper, we aim to explain
how NDN enables data to remain secure independent of
any underlying communication channel, and how it enables
applications to validate received data packets independent of

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Spyridon Mastorakis, Yanbiao Li,
and Lixia Zhang are with the Department of Computer Science, UCLA -
e-mail: zhiyi, yingdi, haitao, mastorakis, lybmath, lixia@cs.ucla.edu.

Eric Newberry was with the Department of Computer Science, the Univer-
sity of Arizona at the time of submission. He is now with the Department of
Electrical Engineering and Computer Science at the University of Michigan
- e-mail: emnewber@umich.edu

Alexander Afanasyev is with the Department of Computer Science, Florida
International University - e-mail: aa@cs.fiu.edu

from where packets were fetched. Moreover, we illustrate
how applications can utilize name semantics to augment the
reasoning about which cryptographic keys to use, instead of
blindly relying on the “yes-or-no” model provided by third-
party certificate services. Section VIII discusses the basic
differences between network security solutions in TCP/IP and
NDN that result from the two different network architectures;
it also identifies remaining issues in NDN’s security solutions.
Section IX concludes the paper.

We hope that this paper can serve as a guide to NDN
security efforts for readers interested in NDN research, as
well as a useful demonstration of new approaches to network
security that differ from today’s common practices.

II. BACKGROUND

A. Named Data Networking

From 10,000 feet, one could view the basic idea of
NDN as shifting HTTP’s request (for a named data object)-
and-response (containing the object) semantics to the net-
work layer [1]. Being a network-layer protocol, NDN’s re-
quests/responses work at a network packet granularity – each
request, carried in an NDN Interest packet containing the name
of the requested data, fetches one NDN Data packet (Figure 1);
neither type of packets contains an address. Applications that
produce data are called producers, while those requesting data
are called consumers.

Data
Consumer

Interest Packet

Data Packet NDN network

Content
Signature

Content Name

Other Optional
Parameters

Content Name

ProducerRepository

Fig. 1. Interest and Data packet in NDN

In addition to being network layer packets, NDN Data
packets also differ from HTTP data objects in two other im-
portant ways: (i) all NDN Data packets are immutable; when
producers change the content of a Data packet, they generate
new a packet with a new name to distinguish the different
version of the content; and (ii) every NDN Data packet carries
a signature generated using its producer’s cryptographic key
at the time of data creation, binding its name to its content.
Named, secured data packets provide a basic building block
for securing NDN communications.

2

Regarding the routing and forwarding of NDN, generally
speaking, an NDN network runs routing protocol(s) to propa-
gate the reachability of data name, similar to how IP networks
use routing protocols to propagate the reachability of IP ad-
dress. Each NDN router forwards Interest packets according to
their names, recording both the interfaces from which Interests
are received and the interfaces to which they are forwarded,
in a “Pending Interest Table” (PIT). Once an Interest packet
reaches a Data packet with a matching name, the Data packet
will follow the reverse path of the corresponding Interest to
reach the consumer, satisfying the corresponding PIT entry on
each router along the way. Data packets can also be cached at
routers to serve future requests for the same data. This stateful
forwarding plane creates a closed feedback loop, enabling
routers to make informed Interest forwarding decisions based
on collected statistics.

B. An Example Application: NDNFit

To aid the reader’s comprehension, we use NDNFit [2], a
prototype NDN application for tracking and sharing personal
fitness activity, as an illustrative example to explain NDN’s
security mechanisms 1. Because NDNFit handles sensitive
personal information, it requires strong data authenticity and
confidentiality.

As a typical use case, assume that a data owner “Alice”
wants to use NDNFit to record her daily fitness information.
Alice runs an app “Sensor” on her mobile phone and an app
“Analyzer” on her laptop. “Sensor” collects Alice’s daily time-
location information, while “Analyzer” produces analytics and
visualizations from the data produced by “Sensor”. Alice con-
trols the whole system using another app “Owner”. Figure 2
shows the data and control flow in NDNFit.

1. Authorize publishing
2. Define encryption rules Grant access

Sensor Analyzer encrypted
data

Owner

encrypted
data

Alice’s Phone Alice’s Laptop
NDN

Network

Alice

Fig. 2. NDNFit application workflow

NDNFit requires that all data produced by “Sensor” and
“Analyzer” be authenticatable, that any data alterations be
detectable, so be any data created by unauthorized entities.
Furthermore, to keep her data confidential, Alice only grants
“Analyzer” the privilege to access the fitness data produced
by “Sensor” – no one else should be able to read this data.
We illustrate in Sections IV ∼ VII how these objectives can
be achieved via NDN’s security mechanisms.

1The NDNFit use case described in this paper is a simplified version of
the actual implementation.

III. AN OVERVIEW OF THE NDN SECURITY DESIGN

The NDN security framework is built on public-key cryp-
tography. As described in Section II, NDN secures data
directly, enabling applications to achieve data authenticity,
confidentiality, and availability independent of the underlying
communication channel and regardless of whether the data
is in-transit or at rest (e.g. being cached in the network or
stored at data publisher). At the same time, NDN aims to
provide highly usable security: to the greatest extent possible,
all cryptographic key management and operations should be
automated, as well as automatically enforced by the system
itself, minimizing the reliance on manual configuration.

In the rest of this paper, we call applications and all other
communication participants in an NDN network entities.2

Each entity owns one or more names. An entity proves its
ownership of a name through an NDN certificate, which binds
the name and a cryptographic public-private key pair possessed
by the entity. We call each certified name an identity. Each
entity can also issue certificates for the sub-namespaces it
delegates to other entities.

A. Challenges and Overview of Solutions

Utilizing public-key cryptography to validate communica-
tions requires NDN to address the following three challenges:

Establishing trust anchor(s) The issuer of an NDN cer-
tificate secures the binding between a name and a public
key through a digital signature generated using its own key.
In order to validate a certificate, a consumer must validate
the issuer’s identity first. In a recursive way, a certificate
chain eventually terminates at a pre-established trust anchor.
A consumer can validate an identity by validating all the
certificates along the certificate chain from the trust anchor.
3 Trust anchors are usually installed via out-of-band mecha-
nisms, and the development of these supporting mechanisms
depends on the trust anchor model in use. In today’s practice,
trust anchors are commonly established via the following
means: (i) installing one or more pre-defined root certificates
(e.g., TLS certificates, DNSSEC) or (ii) establishing trust in
an ad-hoc manner (e.g., Trust-On-First-Use, Web-Of-Trust).
NDN utilizes a different trust anchor model. NDN assumes
that the authority of each networked system (an organization,
a smart home, etc.) establishes its own trust anchor(s) and that
all the entities under that authority can discover these trust
anchors through local system settings. This trust model re-
sembles that of the Simple Distributed Security Infrastructure
(SDSI/SPKI) [4] in trust anchor establishment.

Providing effective solutions for trust management Ef-
fective solutions must enable applications to express their
own trust policies and apply these policies automatically. In
NDN, entities are able to obtain NDN certificates and learn
trust policies from trustworthy parties. A certificate enables
an entity to generate verifiable signatures for its data and

2An entity can be any administrative unit (such as a country, a university,
a company), a home, a user, a node, or an app process. The task of allocating
names to entities is beyond the scope of the NDN design, just like the task
of assigning IP addresses is beyond the scope of the TCP/IP design.

3An alternative is to establish trust via a web of trust as described in [3].

3

build trust relationships with other entities. The trust policies
inform each entity which keys, for a given name/name prefix,
should be used for signature generation and verification. As
we will describe in Section V-A, NDN can express users
and applications’ trust policies by defining the relationships
between data names and signing key names.

Providing usable key management solutions Signing,
verification, encryption, and decryption involve the use of
cryptographic keys, requiring mechanisms to assign and de-
liver the correct keys or certificates in a automatic manner.
Taking advantage of its structured, semantically meaningful
data names, NDN enables application developers to define
naming conventions to systematically express the privilege of
a key in its names. These naming conventions in turn enable
individual entities to automatically construct the names of the
required cryptographic keys for a given data name and to fetch
keys, as we explain in Sections V and VI. Such automatic key
fetching improves the usability of the key management (e.g.,
certificate issuance, certificate provisioning, etc.).

B. Basic Components of NDN Security

The NDN security framework makes use of the following
three basic components:

1) Digital Keys: NDN treats cryptographic keys in the same
way as any other named data, allowing them to be retrieved
using Interest-Data exchanges at the network layer.

2) Certificates: An NDN certificate represents its issuer’s
endorsement on the binding between the name and the public
key. Note that the name of the key does not have to be under
the issuer’s namespace. A certificate is also a Data packet
that carries public key information and can be fetched like
any other data. Certificate names follow the naming conven-
tion “/<prefix>/KEY/<key-id>/<issuer-info>/<version>”,
where the “prefix” is the name to which the key is bound to,
and the components after “KEY” are the key id, the certificate
issuer information, and the certificate version number. For ex-
ample, a certificate name “/ndnfit/alice/KEY/001/002/003”
indicates that (i) the certificate owner is “/ndnfit/alice”;
(ii) the certified key has the id “001”; (iii) the certificate signer
set the issuer information to “002”, which could be the signer
key’s id or some other information defined by the signer; and
(iv) the certificate version is “003”.

3) Trust Policies: Applications define trust policies which
specify which entities are trusted for performing what actions,
and which key should be used for which data namespace and
purpose.

The above three basic components are used in the security
mechanisms described in Sections V ∼ VII. The next section
shows how an entity can obtain these three components from
the security bootstrapping process.

IV. SECURITY BOOTSTRAPPING IN NDN

Security bootstrapping is a process through which an entity
obtains its trust anchor and certificate, and learns trust policies.
The NDNFit example described in Section II-B must go
through security bootstrapping to be properly initialized. In
this example, since Alice is the owner of her devices and

data, Alice’s certificate is set to be the trust anchor. In this
paper, we assume that Alice’s certificate has a name “/ndnfit
/alice/KEY/001/002/003”, whose meaning is explained in
Section III-B.

A. Obtaining Trust Anchors

A data consumer needs trust anchors to verify the identity
of a data producer. Trust anchors are expected to be either
pre-configured or securely obtained through some out-of-band
means. Following the SDSI model, the NDN security design
assumes that different systems can establish their own trust
anchors, and that entities within those systems decide or
develop their own means to obtain trust anchors.

In our NDNFit example, we take the simple approach
of manually installing Alice’s certificate into “Sensor” and
“Analyzer”.

B. Obtaining Certificates

To generate Data packets with valid names and verifiable
signatures, a (producer) application must first obtain a name
and a certificate that certifies its ownership of that name. In
contrast, consumer applications do not need to obtain identity
certificates for data consumption. Once the trust anchor is
obtained, an entity can identify a trustworthy certificate signer
by checking its certificate (e.g., a signer’s certificate is the trust
anchor, or endorsed by the trust anchor), then request a cer-
tificate for itself. NDN security offers flexibility to application
developers in deciding how to obtain certificates. Depending
on the system design, a cloud-based applications may obtain
its certificate from a centralized certificate service, while a
distributed application (e.g., P2P applications) may obtain
the certificate from its user. We have developed the NDN
certificate management system (NDNCERT) [5] to process
such certificate requests automatically.

In our NDNFit use case, the trust anchor, Alice’s certificate,
resides in an NDNCERT daemon (called an “agent”) on her
laptop. This agent plays the role of the certificate signer. “Sen-
sor” and “Analyzer” use the NDNCERT protocol to request
certificates from this agent, and the agent can approve the two
apps using customized out-of-band challenges (e.g., Alice may
manually check the application’s PIN code and approve the
corresponding certificate request). Two certificates, “/ndnfit
/alice/sensor/KEY/...” and “/ndnfit/alice/analyzer/KEY
/...”, will be issued to the “Sensor” and “Analyzer” apps,
respectively.

C. Learning Trust Policies

To determine which cryptographic key is legitimate to sign
which Data packet when producing new data or verifying
received data, an application needs to obtain and install trust
policies after obtaining the trust anchor. In NDN, one’s trust
polices can be written as a piece of named data that can be
retrieved like any other NDN Data packet. After obtaining
the trust anchor, an application can fetch and verify the trust
polices from trusted sources (e.g., a cloud-based application
can learn policies from its central server). Note that there must

4

exist a preconfigured default trust policy, which can be used
to validate the Data packets carrying trust policies. A simple
default policy could direct that Data packets carrying trust
policies must be directly signed by a trust anchor with a given
name.

/ndnfit self-signed certificate

Signature

/ndnfit/KEY/…

/ndnfit/alice/KEY/…

Signature

Alice’s certificate

Other Entities

Sensor App

Digital Keys

Trust Policies

Anchors

Analyzer App

Digital Keys

Trust Policies

Anchors

/ndnfit

/ndnfit/alice

Fig. 3. The cryptographic relationship between the namespaces /ndnfit and
/ndnfit/alice, as well as between /ndnfit/alice and its sub-namespaces.

In our NDNFit example, Alice can configure the trust
policies through “Owner”’s user interfaces – “Owner” can
then generate trust policy Data packets. These policy data
packets will be signed by Alice’s private key. During security
bootstrapping, “Analyzer” and “Sensor” fetch the trust policy
Data packets and, after verifying the trust policies with the
trust anchor (Alice’s certificate), the applications can install the
policies. As shown in Figure 3, after security bootstrapping,
both “Sensor” and “Analyzer” will trust “Owner” and will each
have their own trust policies and certificate under “/ndnfit
/alice”.

The security bootstrapping of Alice’s own certificate takes
place in a different network system where the trust anchor
is “/ndnfit/KEY/...”. Alice learns of this trust anchor and
obtains the certificate “/ndnfit/alice/KEY/...” from the
authority of the namespace “/ndnfit” (we omit the details
of this process here due to the paper length limit).

V. AUTHENTICITY AND INTEGRITY

In this section, we show how NDN security helps to ensure
data authenticity and integrity in an automatic manner. To
enable this supporting function, users must first define their
data acceptance policies.

After obtaining their certificates, the apps “Sensor” and
“Analyzer” can produce Data packets under their correspond-
ing namespaces and sign them using their corresponding
private keys, enabling consumers to check data authenticity
and integrity by verifying the signatures of received Data
packets. More importantly, NDN’s rich name semantics en-
able applications to use names to reason about trust and
define trust policies. Trust policies help consumers validate
a received packet by checking whether the piece of data is
signed by the right key according to the policies. In this way,
trust policies limit the power of each signing key to data
with specific names, supporting data authenticity at a fine
granularity. For instance, in our example, the key certified in
certificate “/ndnfit/alice/sensor/KEY/...” is only allowed
to sign packets under the prefix “/ndnfit/alice/sensor”.

The authenticity and integrity of received Data packets
(some of them may be certificates) are determined by a
combination of the following two factors:

1) Validation by Trust Polices: Structured data names and
key names provide explicit and meaningful contexts for appli-
cations, enabling NDN applications to define rules that only
accept packets signed by the keys with specific names. More
specifically, (i) the data name, (ii) the signing key name,
(iii) the relationship between the key name and data name,
and (iv) the trust anchor name must follow application-defined
rules. We have developed a solution, called trust schema [6], to
let users and applications express their trust policies in a form
that can be directly executed by applications (see Section V-A).

2) Signature Verification: To verify the signature, con-
sumers retrieve the certificate of its producer (identified by
the key name in a dedicated section of the Data packet).
This certificate recursively points to its signer’s certificate and
finally arrives at a known trust anchor. The received data
packet is considered valid only if all the certificates in the
above chain have valid signatures and satisfy the trust policies
of the consumer.

A. Using Trust Schemas to Define Trust Policies

Trust schemas make use of NDN’s naming conventions
to enable systematic descriptions of trust policies, namely:
(i) how Data packet names should be structured, (ii) how
packet signing key names should be structured, (iii) how
the components in a Data packet name should be related to
those in its signing key name, and (iv) which trust anchor is
acceptable.

Data Name:
 Prefix /ndnfit/alice
Key Name:
 Prefix /ndnfit/alice
Anchor:
 /ndnfit/alice/KEY/<key-id>

Rule 1:

Data Name:
 Prefix /ndnfit
Key Name:
 Format /ndnfit/…/KEY/…
Anchor:
 /ndnfit/KEY/<key-id>

Rule 2:

Accept

Accept

Signed by:
/ndnfit/alice/sensor/KEY/<key-id>

/ndnfit/alice/sensor/example

Content

Signed by:
/ndnfit/bob/phone/KEY/<key-id>

/ndnfit/bob/phone/example

Content

Fig. 4. An example of Trust Schema

Upon receiving a Data packet, a consumer application first
uses its trust schemas to assess the packet’s trustworthiness
by examining its certificate chain to the trust anchor – this
takes place before any cryptographic signature verification is
performed. For instance, as shown in Figure 4, in addition
to “Alice” (“/ndnfit/alice”), a user named “Bob” (“/ndnfit
/bob”) is also running an NDNFit system. We assume that
both Alice’s certificates and Bob’s certificates are signed by
the same trust anchor in the “/ndnfit” namespace. Alice’s
devices and Bob’s devices produce data packets under their
own prefixes, namely “/ndnfit/alice/sensor/example” and
“/ndnfit/bob/sensor/example”. Figure 4 shows that there
are two trust schemas. Schema “rule 1” accepts Data packets
whose (i) name prefix is “/ndnfit/alice”, (ii) signing key

5

name prefix is “/ndnfit/alice/KEY”, and (iii) certificate chain
ends with the trust anchor “/ndnfit/alice”. Accordingly, only
packets signed by Alice and strictly under Alice’s prefix are
accepted. However, “rule 2” has a looser requirement: all data
packets with the name and key name prefix “/ndnfit”, and
a certificate chain eventually tracing to the anchor “/ndnfit”,
can be accepted. As a consequence, “rule 2” accepts packets
produced by either Alice’s devices or Bob’s devices.

B. Signed Interests

Although Interest packets are not signed by default, an
Interest can be signed when its use case requires authenticity.
For example, in an IoT scenario, when receiving an Interest
packet containing a command, a smart home device may need
to authenticate the sender of the Interest before executing the
command. Thus, signed Interests enable a controller to actuate
IoT devices. The NDN Interest signature validation process is
the same as the one used to validate Data packets.

VI. DATA CONFIDENTIALITY

NDNFit requires data confidentiality and access control
support to protect sensitive user information. NDN’s basic
approach to data confidentiality is by encryption. The Diffie-
Hellman key exchange protocol [7] is widely used to automat-
ically derive encryption keys for point-to-popint session. How-
ever, Diffie-Hellman does not apply to constructing encryption
keys for multi-party communications, as is the case for ND-
NFit, or NDN applications in general. By taking advantage of
structured names that can convey rich semantics, we developed
Named-based Access Control (NAC) and its enhancement with
Attribute-Based Encryption (NAC-ABE) [8]. NAC/NAC-ABE
automates the key distribution process for both point-to-point
and multi-party applications. A schematized access control
solution [9] has also been proposed to further systemize key
management for access control in NDN networks.

A. Name-based Access Control

To grant access rights, NAC uses “access manager” (e.g.,
an “Owner” app) entity that publishes granular per-namespace
access policies in the form of key encryption keys (KEK,
plaintext public keys) and key decryption keys (KDK, en-
crypted private keys). NAC explicitly appends the encryption
key name to the Data name with a separator “ENCRYPTED-BY”
component, thus consumers can discover the key names after
fetching the encrypted Data packet.

In our NDNFit example, Alice is the owner of all Data
packets produced under the prefix “/ndnfit/alice”. Alice
grants access rights to “Analyzer” to read the data under the
prefix “/ndnfit/alice/sensor” produced by the “Sensor”.

1) Key Generation: The “Owner” will generate a new pair
of keys and produces two Data packets. (i) A KEK packet
carries KEK in plaintext with Data name “/ndnfit/alice/NAC
/sensor/KEK/<Key-id>” and (ii) A KDK packet with name
“/ndnfit/alice/NAC/sensor/KDK/<Key-id>/ENCRYPTED-BY
/ndnfit/alice/analyzer/KEY/<Analyzer-Key-id>” contains
the KDK that was encrypted using “Analyzer”’s public key.

2) Data Production: When producing data, “Sensor”
first generates a symmetric Content Key (CK) for content
encryption. Then, it encrypts the content with the CK and
packs the encrypted content into the Data packet named
“/ndnfit/alice/sensor/example/ENCRYPTED-BY/ndnfit
/alice/sensor/CK/<CK-id>”. Finally, it fetches the KEK
and uses it to encrypt the CK, then publishes this encrypted
CK by putting it into another Data packet with the name
“/ndnfit/alice/sensor/CK/<CK-id>/ENCRYPTED-BY/ndnfit
/alice/NAC/sensor/KEK/<Key-id>”.

Content Data

CK Data
CK Interest

KDK Data

KDK Interest

Extract CK name
from Data Content

Extract KDK name
from Data name

/ndnfit/alice/sensor/example

/ndnfit/alice/sensor/CK/<CK-id>
/ENCRYPTED-BY
/ndnfit/alice/NAC/sensor/KEK/<Key-id>

/ndnfit/alice/sensor/CK/<CK-id>

/ndnfit/alice/NAC/sensor/KDK/<Key-id>
/ENCRYPTED-BY
/ndnfit/alice/analyzer/KEY/<Analyzer-Key-id>

/ndnfit/alice/NAC/sensor/KDK/<Key-id>
/ENCRYPTED-BY
/ndnfit/alice/analyzer

Fig. 5. Naming Convention in Name-based Access Control

3) Data Consumption: As shown in Figure 5, “Analyzer”
first fetches the Data packet, the returned Data packet conveys
that its content was encrypted using the CK. “Analyzer”
extracts the CK name from the Data packet name, and au-
tomatically generate an Interest to fetch the corresponding
CK. To further decrypt CK which was encrypted by KEK,
the consumer follows the naming convention and uses the
KEK name extracted from the CK Data name with its own
name to construct the Interest “/ndnfit/alice/NAC/sensor
/KDK/<Key-id>/ENCRYPTED-BY/ndnfit/alice/analyzer” and
fetches the KDK back. Since the fetched KDK was encrypted
using “Analyzer”’s key, “Analyzer” can decrypt the content
and get the KDK, then decrypt the CK with the KDK and
finally decrypt the content with the CK.

B. Access Control Granularity

To control access control granularity, NAC leverages the
structured namespace of NDN. For example, the above men-
tioned policy to give access to the sensor data, by addition
of “step/8am/10am” suffix to the policy namespace (“/ndnfit
/alice/NAC/sensor/steps/8am/10am”), will be restricted only
to steps data and only during a specified time intervals.

VII. DATA AND CERTIFICATE AVAILABILITY

A. Improving Data Availability via In-network Storage

Because NDN secures data directly, Data packets can be
retrieved from anywhere, including router caches or any other
storage system, regardless of whether these cache or storage
systems are trustworthy. All forwarders may cache passing
Data packets to satisfy future Interests.

6

B. Certificate Availability

NDN certificates are carried in Data packets, enabling them
to benefit from in-network storage. To further improve the
availability of certificates, we developed the NDN certificate
bundle [10] to allow each producer to collect all the certificates
in the certificate chain needed to verify its data and bundle
them together, making the whole certificate chain available to
consumers in a single package.

In the NDNFit example, the producer “Sensor” combines
the certificates needed to verify its data in a certificate bundle.
Specifically, the bundle will contain the application certificate
(“/ndnfit/alice/sensor/KEY/...”) and the trust anchor cer-
tificate (“/ndnfit/alice/KEY/...”). When a consumer appli-
cation needs to verify the retrieved data, it can fetch all the
needed certificates directly from the “Sensor”.

VIII. DISCUSSION

A. Comparison of NDN and TCP/IP Security

The differences between the NDN and TCP/IP security
solutions originate from the fact that NDN names data whereas
IP names locations.

1) Securing Data vs Securing Channels: In TCP/IP, the ba-
sic communication unit is a channel between two IP addresses.
Consequently, protocols like IPSec and TLS secure channels
(e.g., IP channels or TCP channels). However, (i) protected
network channels do not directly translate to data authenticity
– the data could have been altered before entering the channel
and loses cryptographic protection as soon as it leaves the
channel; and (ii) when multiple parties communicate, securing
the channel between every pair of endpoints can quickly
cause scalability and manageability issues. By contrast, NDN
secures data directly, removing any reliance on the security of
intermediate communication channels, allowing applications
to protect what really matters to them – the data.

2) Establishing Trust using Name Semantics: Existing se-
curity solutions lack the means to effectively reason about
trust. For instance, current secure communication protocols
(e.g., HTTPS, or QUIC) follow a common practice of accept-
ing a signature if it was (in)directly signed by a trusted CA.
However, [11] shows that commercial certificate authorities
themselves may not be reliable and that signature verification
alone is not enough to establish trust. NDN takes a funda-
mentally different approach to trust establishment. In NDN,
(i) entities may utilize local authorities, instead of commercial
certificate authorities, as trust anchors; (ii) trust policies are
expressed explicitly by using name semantics in a systematic
way, allowing applications to reason about security rather than
blindly trusting signatures; and (iii) naming conventions can
facilitate automated key management, thus improving system
usability.

B. Remaining Challenges

The development of the NDN architecture has guided the
creation of a new network security framework and, at the same
time, brought both new opportunities and new challenges [12].
Regarding user privacy [13], on one hand, Interest packets

carry data names only, without disclosing the consumer’s
information; on the other hand, Data packet names and sig-
natures may disclose a producer’s identity if they are not
properly protected. Additionally, both the Content Store and
Pending Interest Table in an NDN router have the potential to
increase the attack surface [14]. The NDN research community
is actively investigating ways to mitigate these challenges.

IX. CONCLUSION

In [15], we argued that, by naming and securing data di-
rectly, NDN offered intrinsic advantages for securing network
communications. Evidence from our efforts to develop NDN
security solutions suggests that this is indeed true. Named,
secured Data packets (including certificates and trust schemas)
can be easily fetched from anywhere and serve as a powerful
building block for security solution development. Furthermore,
we learned that one can establish well-defined naming con-
ventions to systematically define trust policies using schemas,
as well as design name-based access control via encryption.
We also learned, the hard way, the importance of automating
security operations instead of leaving the burden to application
developers (who would simply make applications work first by
leaving security out).

Consequently, NDN secures network communications in a
more resilient, intuitive, and less fragmented manner than the
existing solutions implemented in TCP/IP networks. The de-
velopment process of the NDN security model has convinced
us that, by building a network architecture based upon named
data, we can effectively develop exciting new network security
solutions.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under awards CNS-1345142, CNS-1345318, CNS-
1629009, and CNS-1629922.

REFERENCES

[1] L. Zhang, A. Afanasyev et al., “Named Data Networking,” ACM
SIGCOMM Computer Communication Review, 2014.

[2] H. Zhang, Z. Wang et al., “Sharing mHealth Data via Named Data
Networking,” in ICN, 2016, pp. 142–147.

[3] Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “An endorsement-based
key management system for decentralized NDN chat application,”
NDN, Technical Report NDN-0023, Jul. 2014. [Online]. Available:
http://named-data.net/publications/techreports/

[4] R. L. Rivest and B. Lampson, “SDSI–a simple distributed security
infrastructure.” Crypto, 1996.

[5] Z. Zhang, A. Afanasyev, and L. Zhang, “NDNCERT: universal usable
trust management for ndn,” in Proceedings of the 4th ACM Conference
on Information-Centric Networking. ACM, 2017, pp. 178–179.

[6] Y. Yu, A. Afanasyev et al., “Schematizing Trust in Named Data
Networking,” in Proceedings of the 2nd International Conference on
Information-Centric Networking. ACM, 2015, pp. 177–186.

[7] M. Mosko, E. Uzun, and C. A. Wood, “Mobile sessions in content-
centric networks,” in IFIP Networking, 2017.

[8] Z. Zhang, Y. Yu, A. Afanasyev, J. Burke, and L. Zhang, “NAC: name-
based access control in named data networking,” in Proceedings of the
4th ACM Conference on Information-Centric Networking. ACM, 2017,
pp. 186–187.

[9] C. Marxer and C. Tschudin, “Schematized access control for data
cubes and trees,” in Proc. of ACM Conference on Information-Centric
Networking, 2017.

7

[10] M. Mittal, A. Afanasyev, and L. Zhang, “NDN certificate bundle,” NDN,
Technical Report NDN-0054, 2017.

[11] C. Cimpanu, “14,766 Let’s Encrypt SSL Certificates Is-
sued to PayPal Phishing Sites,” [Posted 24-March-2017].
[Online]. Available: https://www.bleepingcomputer.com/news/security/
14-766-lets-encrypt-ssl-certificates-issued-to-paypal-phishing-sites/

[12] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy,
and access control in information-centric networking: A survey,” IEEE
Communications Surveys & Tutorials, 2017.

[13] C. Ghali, G. Tsudik, and C. A. Wood, “When encryption is not enough:
privacy attacks in content-centric networking,” in Proceedings of the 4th
ACM Conference on Information-Centric Networking. ACM, 2017, pp.
1–10.

[14] C. Ghali, G. Tsudik, E. Uzun, and C. A. Wood, “Closing the floodgate
with stateless content-centric networking,” in Computer Communication
and Networks (ICCCN), 2017 26th International Conference on. IEEE,
2017, pp. 1–10.

[15] L. Zhang et al., “Named data networking (NDN) project,” NDN,
Technical Report NDN-0001, October 2010.

