
On the Power of In-Network Caching in the Hadoop Distributed
File System

Eric Newberry
The University of Arizona
Tucson, Arizona, USA

enewberry@cs.arizona.edu

Beichuan Zhang
The University of Arizona
Tucson, Arizona, USA
bzhang@cs.arizona.edu

ABSTRACT
The Hadoop Distributed File System (HDFS) is a network file sys-
tem used to support multiple widely-used big data frameworks that
can scale to run on large clusters. In this paper, we evaluate the
effectiveness of using in-network caching on switches in HDFS-
supported clusters in order to reduce per-link bandwidth usage in
the network. We discovered that some applications featured large
amounts of data requested by multiple clients and that, by caching
read data in the network, the average per-link bandwidth usage
of read operations in these applications could be reduced by more
than half. We also found that the choice of cache replacement pol-
icy could have a significant impact on caching effectiveness in this
environment, with LIRS and ARC generally performing the best
for larger and smaller cache sizes, respectively. Moreover, given
the structure of HDFS write operations, we developed a mecha-
nism to reduce the total per-link bandwidth usage of HDFS write
operations by replacing write pipelining with multicast. In order
to evaluate in-network caching potential, we developed a simula-
tor to replay real traces through a fat tree network simulating the
caching architecture used in the Named Data Networking (NDN)
information-centric networking (ICN) architecture. Our results
suggest that ICN-style in-network caching can provide significant
benefits to HDFS-supported big data clusters, justifying future work
to apply ICN architectures to cluster environments.

CCS CONCEPTS
• Networks→ Network measurement; Network simulations.

KEYWORDS
Caching, Spark, HDFS, Big data, Named data networking, NDN,
Information-centric networking, ICN
ACM Reference Format:
Eric Newberry and Beichuan Zhang. 2019. On the Power of In-Network
Caching in the Hadoop Distributed File System. In 6th ACM Conference on
Information-Centric Networking (ICN ’19), September 24–26, 2019, Macao,

© Owner/Author 2019. This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of Record was
published in ACM ICN 2019, https://dx.doi.org/10.1145/3357150.3357392.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICN ’19, September 24–26, 2019, Macao, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6970-1/19/09. . . $15.00
https://doi.org/10.1145/3357150.3357392

China. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3357150.
3357392

1 INTRODUCTION
The Hadoop Distributed File System (HDFS) is a network file system
that provides reliable and distributed storage to support multiple
big data frameworks, including both Apache Hadoop and Apache
Spark, along with platforms based on these frameworks such as
the Hortonworks Data Platform (HDP). The Hadoop framework
is utilized by many large organizations, including Adobe, Alibaba,
Criteo, Facebook, Google, IBM, Spotify, Twitter, and Yahoo! [3].
Some of the Hadoop clusters used by these organizations are very
large in size, including clusters of 1100 nodes at Facebook and 1650
nodes at Spotify, with the latter running over 20000 jobs daily. A
2000-node cluster at Criteo is used to run a variety of job types,
including both MapReduce (standard Hadoop) and Spark. Yahoo!
reports an even larger cluster with 4500 nodes, used for research
applications [3].

The HDFS file system runs on standard IP networks, meaning
that stored objects are mapped at the application layer. Therefore,
when reading or writing data, HDFS clients must coordinate with a
central server (a.k.a. the “NameNode”) to determine which storage
servers (a.k.a. “DataNodes”) they should read/write data to/from.
Moreover, HDFS uses IP unicast to perform file system operations.
Therefore, multiple read requests for the same data will result in
duplicate copies of this data being transmitted over the network.
Additionally, stored data is replicated across multiple DataNodes
for both reliability and load balancing, and writes are performed in
a “pipeline”, with the same data being transmitted multiple times
across the network: first from the client to the first DataNode, then
from the first DataNode to the second DataNode, and so on [5].

Given this potential for duplicate data being sent across the net-
work, in this paper, we evaluate the caching potential present in
the HDFS file system. We seek to determine the benefit that in-
network caching can provide to Spark applications, particularly
the type of in-network caching seen in Named Data Networking
(NDN) [33] and other information-centric networking (ICN) archi-
tectures. ICN architectures can potentially offer excellent benefits to
HDFS-based clusters. While ICN architectures have been evaluated
extensively for use in WAN environments, the benefits of caching
and the impact of different replacement policies on network traf-
fic in HDFS-based big data frameworks in LAN environments are
mostly unknown. As mentioned above, such frameworks dominate
big data computing and subsequently the network traffic seen in
many data centers. In this paper, we explore the different traffic
types present in HDFS and study temporal and spatial access to data
and the impact that this has on cache behavior. Numerous cache

https://doi.org/10.1145/3357150.3357392
https://doi.org/10.1145/3357150.3357392
https://doi.org/10.1145/3357150.3357392

ICN ’19, September 24–26, 2019, Macao, China Eric Newberry and Beichuan Zhang

replacement policies have been developed for buffer caches in op-
erating systems – however, their benefit for in-network caching is
relatively unknown. Subsequently, we evaluate and analyze how a
range of cache replacement policies are able to reduce the network
traffic seen in big data computing.

2 MOTIVATION
The NDN architecture uses the information-centric networking
(ICN) paradigm. While traditional network architectures like IP
focus on delivering data between specific endpoints, ICN networks
focus on retrieving information (or content). In other words, while
IP networks “push” data across the network, ICN networks “pull”
data from the network to a host. This is accomplished by assigning
every piece of content in the network a unique name in a hierar-
chical namespace. Assigning each piece of content a hierarchical
name provides semantic meaning at the network layer and does
not require that a mapping be established between the application
and network layers’ location and naming systems. This namespace
design also allows for new, more data-centric approaches to se-
curity [34], which could prove useful in big data environments.
However, one feature of ICN that has the potential to provide sig-
nificant benefits to big data environments is “in-network caching”.
In-network caching is a commonality among the multiple ICN archi-
tectures, enabled through the use of named data objects (“contents”
or “Data packets”) [1, 30]. 1 Data retrieval from an in-network cache
will be notably quicker than retrieval from the original DataNode
because the data will be retrieved from memory instead of HDD-
or SSD-based storage. Moreover, it provides for simpler cache man-
agement than the existing HDFS “centralized cache management”
mechanism, which requires centralized coordination, knowledge of
data access patterns, and that explicit requests be made to cache spe-
cific data [4]. Additionally, this still necessitates that read requests
be sent all the way to the DataNode to be satisfied.

Since contents in ICN are identified by unique names, they can
be cached on intermediate nodes, such as routers or switches, to
satisfy future requests for the same content. If a request for content
(an “Interest”) passes through a network node storing a cached copy
of a matching content, it can satisfy the request and decrease the
load on the data producer and the network overall, as well as reduce
the time the requester (the “consumer”) must wait for its request
to be satisfied. Additionally, mechanisms have been proposed to
allow off-path caches to satisfy requests for contents in ICN [29].

HDFS is used by several big data frameworks, including Apache
Hadoop and Apache Spark. The existing standard implementation
of HDFS runs on the IP protocol stack, leaving it unable to provide
any form of caching at the network layer. Meanwhile, as discussed
above, ICN architectures like NDN provide caching natively at the
network layer. Given the benefits that in-network caching could pro-
vide to HDFS, Gibbens et al. developed a prototype implementation
of HDFS that ran natively over NDN [7]. However, their imple-
mentation suffered from severe performance penalties compared to
the official Apache Software Foundation implementation of HDFS,
which utilizes TCP over IP networks. This was largely caused by
the application-layer NDN forwarder they utilized, NFD, which

1For an overview of the similarities and differences between the various ICN architec-
tures, we recommend a survey paper on the subject [1, 30].

is designed primarily for modularity and ease of extension [26],
compared to the optimized and mature implementations of TCP
built into modern operating systems.

Gibbens et al. also conducted evaluations of HDFS caching po-
tential, although their evaluations were conducted only with ap-
plications using the Hadoop MapReduce framework and did not
utilize other frameworks, such as Apache Spark. MapReduce splits
workloads into a “Map” and a “Reduce” phase, writing the results
from the Map phase back to HDFS before reading them again for
the Reduce phase. Meanwhile, Spark attempts to keep this data
stored in memory between compute phases [32] – this reduces
both the total amount of traffic in the network and the amount of
data that must be written to and read from slower HDDs or SSDs,
increasing performance.

However, before significant effort is spent developing an opti-
mized and fully-featured ICN solution for HDFS, it is important
to determine if the ICN paradigm can provide significant benefits
to this application. As such, our evaluations in this paper seek to
determine whether there is significant data reuse, as well as total
network traffic, in Spark applications utilizing HDFS. In addition,
the large volumes of data communicated over the network neces-
sitate specialized replacement policies to prevent cache thrashing.
Understanding the specific benefits and requirements of this appli-
cation would further motivate ICN deployments in the data center
to support big data computing.

Numerous cache replacement policies have been developed for
buffer caches in operating systems, with the most popular being
Least Recently Used (LRU). While LRU performs well when captur-
ing temporal locality in small file systems, it is unable to handle
large data systems with varying reuse distances. To address these
challenges, numerous replacement policies have been developed
that try to capture even larger reuse distances and quickly replace
data that is only used once. Subsequently, such replacement policies
will intuitively perform much better than the standard LRU policy
in big data environments. We selected four additional cache replace-
ment policies for evaluation that aim to address larger reuse dis-
tances and prevent cache thrashing: Adaptive Replacement Cache
(ARC) [23], Low Inter-reference Recency Set (LIRS) [13], Multi-
Queue (MQ) [35], and Two Queue (2Q) [14].

Caching can occur at numerous nodes in the network, as we are
conducting evaluations on a fat tree topology [2] connecting an
Apache Spark cluster with 128 compute/DataNodes nodes and 1
coordinator/NameNode. Data behavior can be significantly different
at different layers of the fat tree network topology and different
polices may be more suitable at different levels. Subsequently, it is
critical to understand the different levels and how different caching
policies can interact with one another in such a topology.

2.1 HDFS Write Operations
We first consider write operations, as they can be easily accom-
plished in ICN networks with a minimal amount of caching. In
HDFS, data is stored across one or more DataNodes, with the exact
number of copies depending upon the “replication factor” of the
stored HDFS block (i.e., the number of identical copies of the block

On the Power of In-Network Caching in the Hadoop Distributed File System ICN ’19, September 24–26, 2019, Macao, China

stored across the file system). 2 To write to a new file or append to
the end of an existing one, a compute node will first contact the
NameNode to retrieve a list of the DataNodes that the file will be
written to [5]. The client will then send each chunk of the data to
be written to the first DataNode in the list, which will then send
the chunk to the next DataNode on the list, and so on until all
DataNodes in the list have a copy of the chunk – a feature known
as “replication pipelining“. The last node in this pipeline will ac-
knowledge each chunk to the client as it is received [6]. Since the
data replicated across each DataNode is identical, ICN’s benefits
are clearly visible as all the replications after the first in a write op-
eration (from the first DataNode to the second DataNode, if the first
DataNode is the same node as the writing compute node; otherwise,
from the compute node to the first DataNode) can be satisfied by
in-network caches.

To use ICN for HDFS writes, the write request that pushes the
data chunks across the network would be converted into multiple
ICN pull requests, where DataNodes ask for each chunk of the data
to be stored. These concurrent read requests convert the pipeline
into multicast-like traffic. This is because requests for each chunk
of the written block will intersect at one or more switches in the
network before reaching the writing client and either be aggregated
into a single request or, if the request has already been satisfied on
that switch, be satisfied from the cache on that switch. Therefore,
the requests will effectively form a multicast tree.

As in IP-based HDFS, the client will still need to receive write
acknowledgements to ensure that its data was successfully written
to the destination DataNodes. However, since we are not using a
pipeline, each DataNode will need to individually confirm receipt of
the data. Since we can rely upon these DataNodes to retry requests
for failed chunks of their own accord, we do not need to acknowl-
edge the receipt of every chunk and can simply send an Interest
for a DataNode-specific prefix registered by the client to indicate
transfer completion once all chunks of the block have been success-
fully retrieved. If a DataNode fails during the write process, the
client, having never received an acknowledgement Interest from it,
will time out its write and seek out alternative DataNodes through
the NameNode. Since the size of Interests would be significantly
smaller than the Data packets in our scenario, the overhead of chunk
retrieval and completion acknowledgement would be minimal.

A priority of HDFS is to store copy of the data on the same
DataNode that produced it and (for a replication factor of three)
store the remaining two copies on one DataNode in the same rack
as the first DataNode and one DataNode in a different rack to
provide reliability [5]. 3 Therefore, the amount of data that is sent
through the network amounts to approximately twice the amount
of data that is generated (in the case of a replication factor of three).
Subsequently, utilizing ICN in this scenario can intuitively satisfy
half of the write traffic from in-network caches.

To validate our intuitions, we conducted evaluations of the net-
work traffic in a 129-node (128 compute/DataNodes and 1 coordina-
tor/NameNode) virtualized cluster running Apache Spark. On this
cluster, we ran benchmark applications from the Intel HiBench [12]

2The default replication factor in HDFS is three; however, this factor, along with the
maximum block size, can be set on a file-by-file basis [5].
3An exception to this case is if there is no space remaining on the producing node, in
which case this node will be replicated in the replication pipeline.

benchmark suite. Table 2 shows the amount of unique data written
and total data sent across the network as a result of replication dur-
ing the execution of selected benchmarks from the HiBench suite.
We observe in all scenarios that the default policy of storing one
replica locally and replicating twice across the network generally
holds, with less than 5% of blocks following a different replication
pattern (and these appear to be either Spark libraries, configura-
tion information, or temporary files). Furthermore, we observe that
Spark’s fundamental principle of keeping intermediate data in mem-
ory during execution works well and only three benchmarks show
a significant amount of data being generated and written across
the network. The aggregation, scan, and sort applications write
a significant amount of data because they write many temporary,
intermediate files to HDFS, with many individually sized over 100
MB for the latter two traces.

To determine how much of a benefit ICN could offer to HDFS
writes, we calculated how much multicast could reduce total net-
work traffic compared to pipelining. Thanks to the structure of fat
trees, all hosts in different pods are the same number of hops away
from the sender, regardless of the size of the topology. Moreover,
it is highly likely that a real deployment of HDFS would use rack-
aware replica placement, which will (for a replica factor of 3) place
one replica on the local DataNode, one replica in a remote rack,
and one replica on another DataNode in the same remote rack (in
the same fat tree pod, as discussed in Section 3.2) [5]. Therefore,
we can calculate a reduction percentage that will hold regardless of
topology size or block size. As shown in Table 1, depending upon
whether the third replica is on the same edge switch as the second
replica or not, traffic will be reduced by 12.5% to 20%. The values in
this table only consider the HDFS data and do not consider header
sizes or other packet overheads. As we can see, our intuition of ICN
being able to reduce network traffic of writes even with a small
amount of caching is correct, highlighting ICN’s multicast-like
behavior and its benefits. Since replacement policies and caching
at-large are irrelevant for write traffic, we focus on read traffic in
the remainder of the paper.

2.2 HDFS Read Operations
HDFS read operations over the network occur when a compute
node needs to read data stored on a remote DataNode. The primary
goal of Spark is to place computing tasks on nodes that store input
data, limiting the network traffic used to fetch data from other
nodes. However, in scenarios where data needs to be utilized for
computations on multiple nodes, these nodes will first contact the
NameNode, which will respond with the address of the DataNode
that the client should send its read request to [5]. At the file system
level, the read request will contain the block ID (including version),
the starting byte offset, and the size in bytes to read, along with
other information extraneous to our purposes. The requested data
is then returned to the compute node over the network.

Similar to our prior discussion of writes, our intuition tells us that
there should be very little reads across the network if the application
only performs computations on a single piece of data at a time
and the Spark framework schedules compute tasks on the nodes
containing the relevant input data. To validate our assumption, we
executed the same benchmarks shown in Table 2 and focused on

ICN ’19, September 24–26, 2019, Macao, China Eric Newberry and Beichuan Zhang

Table 1: Reduction in write traffic for a 128 MB HDFS block on a fat tree from using multicast instead of pipelining

Scenario Pipelining (MB) Multicast (MB) Reduction
Third replica on same edge switch 1024 896 12.5%
Third replica on different edge switch 1280 1024 20.0%

Table 2: Unique data written and network data transfer for
writes in the selected benchmarks

Trace Written Data (MB) Network Transfer (MB)
aggregation 3519 7038
als 24 48
gbt 99 198
join 101 202
kmeans 6 12
linear 9 19
lr 19 38
rf 11 22
scan 19169 38338
sort 27784 55568
wordcount 5 11

data read requests across the network. We eliminate read requests
destined to the local node from our evaluations, as they do not
transmit HDFS data over the network and therefore do not impact
our caching evaluation. Table 3 shows the amount of data read
during benchmark execution. There are two types of read activity
we can consider: the “unique data size”, which only counts each
read unique byte a single time, no matter how many times it is read,
and the “total data size”, which counts every byte once for each
time it is read. One thing that should be noted about HDFS read
operations is that, although read offsets and lengths can be specified
at a byte granularity, data is actually transferred from the DataNode
to the client in fixed-sized, aligned chunks with a default size of
512 bytes, excepting the last chunk in a block, which will be of its
actual size. The client will simply discard excess data outside its
requested read boundaries. Therefore, when calculating the unique
and total read data sizes, we aligned reads to these boundaries to
produce the values shown in Table 3. We did not have knowledge
of the exact sizes of each block, so we were unable to exactly match
the HDFS algorithm in this calculation, given the exception to the
fixed chunk size for the last chunk in a block. However, we note
that this has an insignificant impact on our results, as the total
and unique data sizes with exact byte boundaries and with aligned
chunks differed by less than 1 MB for all applications.

As seen in these results, our intuition is validated and there is
little read network traffic in most benchmarks, demonstrating the
ability of Spark framework to place computation close to input
data. However, the exceptions are linear and lr, which feature
total data sizes of approximately 109 GB and 19 GB transferred
across the network, respectively. These applications train machine
learning models, namely using linear and logistic regression, re-
spectively [12]. Based upon an analysis of the file names used for
data stored on HDFS by these applications, we believe they show

Table 3: Unique and total read data size

Trace Unique (MB) Total (MB)
aggregation 221 230
als 1147 1156
gbt 33 43
join 4 13
kmeans 395 573
linear 20952 111195
lr 8893 19966
rf 1084 1094
scan ~0 9
sort 740 749
wordcount 847 1499

high potential for caching because they have large amounts of in-
termediate data that must be shared between many partitions of
the application.

From the above observations, ICN deployment for big data ser-
vices can potentially help five out of eleven applications, three for
writes and two for reads, with no overlap between the two lists. The
applications that experienced the greatest benefit from multicast-
like write behavior were aggregation, scan, and sort; however,
due to close temporal locality, replacement policies have little effect
on the write traffic and we instead focus on read traffic and the
impact that cache replacement policies have on read performance.
Two applications (linear and lr) generated significant read traffic
and can potentially benefit from caching when combined with a
proper replacement policy. Subsequently, in the rest of the paper,
we will focus on linear and lr and analyze the caching behavior
for these two applications. Linear and lr are machine learning
applications, a very important class of applications considering
current trends of applying machine learning in big data computing.

3 DESIGN
HDFS blocks can be of very large sizes (up to 128 MB in the default
configuration), while compute nodes may only request a small
portion of a block. Therefore, our system splits HDFS blocks into
small, sequential “cache blocks” to make it easier for replacement
policies to operate more precisely on cached data, i.e., to discover
“hot” portions of an HDFS block, if they exist. In our system, each
of these cache blocks would be an ICN Data packet, necessitating
that an Interest be sent individually for each cache block that a
host wishes to read. Therefore, while we wish to optimize caching
granularity as much as possible, there is a simultaneous motivation
to use larger ICN Data packets to reduce the number of Interests
that need to be sent, improving performance. This is opposed to
the existing IP-based HDFS read mechanism, which uses very small

On the Power of In-Network Caching in the Hadoop Distributed File System ICN ’19, September 24–26, 2019, Macao, China

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0 	500 	1000 	1500 	2000 	2500

Nu
m
be
r	o

f	R
eq
ue
st
s	(
no
rm

al
ize

d	
to
	8
	K
B)

Cache	Block	Size	(KB)

Read	(linear)
Read	(lr)

Figure 1: Normalized comparison (between applications) of
the number of read requests occurring from the use of cache
blocks of various sizes

chunks (by default, 512 bytes) within larger IP packets, which would
result in high retrieval overhead if used in our system.

To determine the best cache block size for the traces we collected,
we evaluated the number of network requests that would result
from the use of cache blocks of a particular size – we chose to
evaluate cache block sizes starting at 8 KB, doubling beyond that
point, and ending at 2 MB. 8 KB was chosen as the starting value
because it is close to, but less than the current default maximum
packet size (8800 bytes) in the NFD forwarder for NDN. Despite
the use of 8 KB in the current implementation of NDN, we believe
that larger blocks, and therefore larger Data packet sizes, may be
more efficient for our system.

To determine the best cache block size, we must consider the
side effects of having fewer requests, but larger cache blocks, versus
having more requests, but smaller cache blocks. When requesting
cache blocks using ICN, each node on the path will keep track of
all pending Interests in its “Pending Interest Table” (PIT) until the
requests are satisfied or time out [31]. Depending upon the number
of cache blocks requested simultaneously, this data structure may
become very large and require lots of memory to store on each
node. Additionally, with smaller cache blocks, the caches on each
device will need to keep track of many smaller packets, also leading
to significant storage overhead for the relevant cache data structure
(the “Content Store”).

Meanwhile, the use of larger cache blocks would require fewer re-
quests to obtain the same amount data and therefore lead to smaller
data structures. However, this may lead to decreased caching ef-
ficiency, as replacement policies will have less ability to identify
smaller regions of “hot” data, meaning that caches will not be able
to store as many of these regions. Additionally, more extraneous
data (outside of the single byte-granularity bounds of the HDFS
read request) will be returned in start and end cache blocks. This
network bandwidth will be wasted because the end host reading an
HDFS block would simply discard portions of the received cache
blocks falling outside of the byte range they requested.

Therefore, our goal is to reduce the number of requests as much
as possible, while still allowing for reasonable caching granularity.
In order to determine a reasonable cache block size, we conducted
evaluations of the number of Interests that would need to be issued
to retrieve all cache blocks at various cache block sizes for both the
linear and lr traces – for each trace, these values were normalized
to the number of requests for that trace with 8 KB cache blocks
(which is shown with a value of 1 in the figure). The results of this
evaluation are shown in Figure 1. As expected, this approximately
follows an inversely proportional distribution (1x), as each doubling
of cache block size results in approximately half as many requests.
In this figure, the rate at which the number of network requests
changes significantly decreases when cache block sizes are approx-
imately 128 KB – 128 KB is indicated with a vertical bar in this
figure. Further increases in cache block size beyond this point will
therefore provide only minimal improvements to router overhead,
while harming caching granularity. Therefore, we determined that
128 KB was the best cache block size to conduct our evaluations
with, given its balance between generating fewer network requests
per read operation and being able to evaluate content popularity
on a fine granularity.

3.1 Network and Caching Behavior
Now, we will address how a read request in an HDFS system run-
ning on ICN would operate. First, the client would need to, based
upon the cache block size in use (128 KB in our case), find the
range of cache blocks that must be read to satisfy the request. To
determine which cache blocks a request covers, we use the follow-
ing formulas to find the start and end cache blocks of a read request:

StartCB = ⌊O f f setOP /SizeCB ⌋
EndCB = ⌊(O f f setOP + SizeOP − 1)/SizeCB ⌋

In these formulas, the CB subscript refers to the cache blocks
used for in-network caching, while the OP subscript refers to the
original HDFS blocks. Since cache blocks are of a constant size and
HDFS operations are specified on a byte-level granularity (featuring
a starting byte offset and a total size), we find the starting cache
block by calculating which cache block contains the offset. Simi-
larly, we find the ending cache block by finding the ending offset
of the original HDFS operation, which is the starting byte offset
summed with the read size (subtracting one from this sum because
the starting offset is included in the operation size). These values
are floored to get integers representing the range of cache blocks
necessary to complete the operation.

Once this range has been determined, the client will send Inter-
est packets to request all the blocks in the range [start, end] (one
Interest will be sent per requested block). ICN routing is based upon
Interest name, rather than source and destination address. Many
novel routing protocols have been proposed for ICN, including link-
state [11, 20] and hyperbolic [18, 19] routing protocols. However,
for the purposes of our evaluations, we relied upon heuristics about
the structure and operation of fat trees to find routes between hosts.
In particular, we used a simple calculation to determine which
switch at the core layer an Interest packet would traverse, as shown

ICN ’19, September 24–26, 2019, Macao, China Eric Newberry and Beichuan Zhang

in the following formula:

(src + dest) mod nCore

In this formula, src and dest refer to the original IDs of the client
and DataNode hosts on the trace generation cluster, respectively,
while nCore refers to the number of core switches in the topology
(in the fat tree topology, the number of core switches varies with
the parameter k [2]). The original host IDs were the concatenated
string representations of the last two bytes of a node’s IP address. 4

When an Interest reaches a switch or router in the network, it
checks the name of the Interest (containing the HDFS block ID and
cache block ID) against the names of Data packets in its “Content
Store” [31]. If it finds a match, it returns the cached Data packet
and considers the Interest to be “satisfied”. Otherwise, it will send
the Interest on one or more path(s) determined by the forwarding
system. While NDN uses longest-prefix matching of names 5 (with
names structured as components separated by forward slashes) to
match Interest names against Data packets in the Content Store,
we envision that a real implementation of this system would use
specific enough Interest names to ensure that only the correct
version and cache block ID are matched. Returning Data packets
will be cached in the Content Store, which is managed by a cache
replacement policy, as discussed in Section 3.2. Data packets simply
follow the reverse path of Interest(s) they satisfy, so we leave the
optimization of HDFS routing in an ICN network to future work.

While one might presume that we could optimize storage utiliza-
tion by reducing the number of copies of a piece of data stored on
DataNodes based upon how frequently it is cached in the network,
this may in fact be detrimental to HDFS’s critical goal of data in-
tegrity in the face of DataNode failure. This is because in-network
caching is simply an optimization, with no guarantee that cached
data will remain so. This makes in-network caches too volatile to
be treated as a replica of the original data by HDFS.

3.2 Multi-Layer Caching Hierarchy
The “fat tree” network topology that we utilize in this paper was
proposed by Al-Fares et al. in 2008 [2], building upon an earlier
topology proposed by Leiserson in 1985 [21] (also called a “fat tree”),
but making use of a Clos network containing links of equal band-
width, instead of containing “fatter” (i.e., greater bandwidth) links
when approaching the root of the tree. This topology was chosen
because it is applicable to the data center environments utilized by
large big data systems, particularly because of its redundant links
and convergence onto fewer switches as one approaches the core of
the network. An example of this topology can be seen in Figure 2.

The fat trees developed by Al-Fares et al. feature a parameter
k that controls the size of the topology, including the number of
end hosts. Fat trees are split up into three layers of switches and
one layer of end hosts. The layers of switches are the “core” layer,
the “aggregation” layer, and the “edge” layer – edge switches con-
nect directly to end hosts and aggregation switches, aggregation
switches connect to edge switches and core switches, and core
4In each cluster, we verified that there were no collisions between the IDs of any hosts
caused by this mechanism.
5Other ICN architectures may only use exact matching of names in their forwarding
systems.

switches connect only to aggregation switches. The topology is
divided into pods containing an equal number of end hosts, with
the topology containing k pods. Each pod also contains k/2 edge
switches and k/2 aggregation switches; each edge switch connects
to every aggregation switch in the pod. Meanwhile, core switches
are outside the pods (there are (k/2)2 core switches in the topology)
– each aggregation switch connects to k/2 core switches and each
core switch connects to one aggregation switch in each pod.

We sought to match, as closely as possible, the number of DataN-
odes in the trace to the number of end hosts in the fat tree. Therefore,
given traces containing 128 DataNodes and 1 NameNode, we set
k = 8, which gave us a topology with 128 DataNode end hosts 6, 32
edge switches, 32 aggregation switches, and 16 core switches.

In our generated evaluation topology, caches exist on every
switch in the network and can store the same amount of data. On
these caches, we simulated five cache replacement policies: 2Q,
ARC, LIRS, MQ, and LRU, comparing the performance of the first
four against the LRU policy that is currently used by NDN. We
chose these five policies because they are widely used and known
in various areas of computer systems. We will now describe them.

Two Queue (2Q). utilizes three queues, Am, A1in, and A1out .
The first two queues contain blocks that are currently stored in the
cache, while the latter contains the metadata of recently-evicted
blocks. When a block is first accessed, it will be added to A1in,
which is structured as a FIFO queue. When it is evicted from A1in,
the block will be evicted from the cache, but its metadata will be
moved to A1out , which is also structured as a FIFO queue. If the
block is accessed again before its metadata is evicted from A1out ,
it will be moved to Am, which contains only hot blocks and is
structured as an LRU queue [14]. In our evaluations, A1in held 25%
of the cache, while Am held 75% of the cache, as recommended by
the authors [14]. The goal of 2Q is to evict data that is used only
once and store in the LRU cache data that is accessed more than
once. Subsequently, we expect to see better performance from 2Q
in big data environments compared to LRU, as large amounts of
data may be used only once, polluting the standard LRU cache.

Adaptive Replacement Policy (ARC). is similar to 2Q and uses
two lists to filter single use blocks and keep popular block in the
cache. While 2Q uses fixed-sized queues, ARC dynamically adjusts
queue sizes based on their usefulness in capturing temporal locality
in the moving data [23]. Dynamic distribution between two queues
may be more beneficial for big data traffic than 2Q, as 2Q may
discard data earlier due to it’s fixed size A1in queue, which may be
overflowed if large amounts of data are seen by the cache.

Multi-Queue (MQ). extends the idea of 2Q by providing more
queues and allocating the data to a given queue based on its access
frequency. The idea is to keep blocks with higher access frequencies
in the cache for a longer amount of time. Similar to 2Q, MQ keeps
track of recently-evicted block addresses and access frequency in
a buffer called Qout . If a cache miss occurs for a block listed in
Qout , the block will be restored to the queue matching its access

6We solved the issue of placing the NameNode by mapping it to first end host in the
topology, unless these would be the same host, in which case we mapped it to the
second end host in the topology.

On the Power of In-Network Caching in the Hadoop Distributed File System ICN ’19, September 24–26, 2019, Macao, China

Core

Aggregation

Edge

End hosts

Figure 2: Fat tree network (k = 4)

frequency [35]. MQ has the potential to detect and sort more popu-
lar data, benefiting big data applications. However, if the data reuse
frequency is similar between blocks, it will perform similarly to 2Q.

Low Interreference Recency Set (LIRS). enhances the idea of
frequency by keeping track of reuse distance (how soon the data is
used again), keeping data in the cache according to this metric. Simi-
lar to 2Q, LIRS filters single use blocks and does not pollute the main
cache [13]. LIRS is among the best performing policies for cache
management and we also expect it to effectively capture temporal
locality in big data applications and offer good performance.

3.3 File System Mechanics
When adapting a distributed file system to the ICN architecture,
one must ensure the continued correct functionality of various file
system mechanisms. Therefore, we considered how two essential
HDFS mechanisms, data integrity validation and version discovery,
would operate in an ICN environment.

Data Integrity. HDFS relies upon checksums to ensure that re-
trieved data has not been corrupted in storage or transit [5]. When
a DataNode transmits a read block to a client, each chunk in the
block will be accompanied by a separately-stored checksum, with
the client having the option of validating the retrieved block against
these checksums to ensure their integrity. If a chunk in the block
fails this validation, the client can reattempt the read from a dif-
ferent DataNode. However, since ICN operates based upon data
names instead of host names, clients would not be able to explicitly
request the data from a different DataNode. Moreover, the incorrect
version of the block would likely still be cached within the network.
Instead, in our system, the client could report this incident to the
NameNode, which would then instruct the DataNode to delete the
corrupted version of the block. After receiving confirmation of this,
the client could override potentially incorrect versions of the block
cached in the network by retrieving the blocks again while specify-
ing the “MustBeFresh” element in their Interests. When combined
with a “FreshnessPeriod” of zero in all transmitted Data packets,
this mechanism would prevent the Interest from being satisfied by

cached Data packets, forcing it to be forwarded all the way to a
producer DataNode [24, 25]. However, this is not an ideal solution –
in an ideal ICN distributed file system, data blocks would be stored
as Data packets at rest (and therefore be combined with their check-
sum). This would avoid this issue, because corrupted Data packets
would be dropped in the network after failing signature validation.

Version Discovery. Given that blocks in HDFS can be updated
while keeping the same block ID (while changing the version num-
ber/“generation stamp” value), there may be concerns about the
consistency of caches in our system. However, in ICN, the problem
changes from one of cache consistency to one of version discovery,
allowing us to work around the traditional caching issue of consis-
tency. In traditional HDFS systems, the latest version information
will be retrieved directly from the NameNode. In ICN, the default
caching mechanisms may prevent information retrieved from the
NameNode from being the absolute latest. To solve this issue, we
rely upon work by Mastorakis et al., who proposed a mechanism
to discover the latest version of a given content by first retrieving
an up-to-date “metadata” Data packet that describes how to obtain
the latest version of a content [22]. Since version numbers can be
included as a component of an Interest’s name, after retrieving a
“metadata” Data packet from the NameNode, the version number
can be included to ensure that the latest version of a block will be
retrieved. As such, it will not matter whether out-of-date blocks are
cached in the network, as they will be ignored due to the differing
version number included in the Interest name.

4 EVALUATION ENVIRONMENT
The benchmark application traces used in our evaluations were col-
lected on the Amazon Web Services (AWS) Elastic Map Reduce
(EMR) system. The clusters consisted of 129 m3.xlarge nodes,
with 1 coordinator/NameNode and 128 compute/DataNodes. The
nodes in the cluster ran Amazon EMR release 5.10.0, which features
Apache Hadoop version 2.7.3 and Apache Spark version 2.2.0. We
used the default configuration provided by Amazon, with a few
changes that we will now discuss. In order to obtain log entries
from which to generate a trace of HDFS read and write operations,

ICN ’19, September 24–26, 2019, Macao, China Eric Newberry and Beichuan Zhang

we set HDFS daemons to log at the “DEBUG” log level. We disabled
dynamic resource allocation in Spark and manually set the number
of executors to 128 to ensure that the workload would be truly
spread across the entire cluster, fully demonstrating the caching
potential available in Spark. We set Spark to partition jobs into 256
partitions to reduce the workload on each Spark executor.

In the benchmark suite we used for our evaluations, HiBench,
each application’s runtime is split into a “prepare” and a “run” stage,
which distribute the input data across the cluster and perform the
big data computations, respectively. We are only focusing on the
“run” stage as we want to explore benefits of ICN for big data com-
puting. Initial data allocation and replication would benefit from
the same multicast-like features offered by ICN, as we discussed in
the case of writes and, subsequently, we do not consider it when
studying cache replacement behavior during execution time.

After obtaining the logs from each DataNode, a trace was gen-
erated for each cluster by parsing each HDFS log file. Our traces
contained the following information for each HDFS read and write
operation: (i) the operation timestamp, (ii) operation type (READ
or WRITE), (iii) block ID, (iv) starting byte offset, (v) size (in bytes),
(vi) source node, and (vii) destination node. Our traces do not in-
clude the “generation stamps” (i.e., versions) of blocks because
we verified that every block in the traces we evaluated was only
associated with a single generation stamp value.

After extracting the traces, we split the read and write operations
into separate logs for each application, also splitting the “prepare”
and “run” stages, although only the read traces from the “run” stage
were used for our evaluations in Section 5.

The generated traces were analyzed on a fat tree [2] topology,
as discussed in Section 3.2. DataNodes (and the NameNode) were
assigned to end hosts in the topology as they were referenced by
operations during runtime. To avoid spatially clustering DataNodes
based upon the temporal order in which operations occurred, posi-
tions in the topology were assigned using a seeded pseudo-random
number generation (PRNG). This PRNG assigned end hosts to a
random position in the cluster; if the generated position was already
assigned, it would generate another position and repeat this pro-
cess until it found an one that was empty. Due to the fixed order of
operations, evaluations with the same input parameters, including
PRNG seed, would result in the same end host positions. To avoid
any irregularities caused by the use of a particular PRNG seed, ten
random seeds were chosen and each scenario was repeated with
each input seed. This set of seeds was used across all scenarios.

HDFS instances can be configured to be “aware” of which rack
a DataNode is placed on, allowing the NameNode to place repli-
cas of blocks and direct read requests in a manner that improves
performance and reliability [5]. However, the clusters we obtained
traces from placed all DataNodes in the same rack. Therefore, our
random host placement did not interfere with this feature.

5 EVALUATION
In IP networks, a DataNode will be contacted every time a compute
node wants to read data, even if that data was recently read by an-
other host in the network. This is because IP lacks a network-layer
caching feature to deduplicate redundant or overlapping requests.

	250

	300

	350

	400

	450

	500

	550

	600

	650

64 128 256 512 1024

To
ta
l	N
et
wo
rk
	T
ra
ffi
c	
(G
B)

Cache	Size	(MB)

Unlimited	(min)
No	Cache	(max)

2Q	(avg)
ARC	(avg)
LIRS	(avg)
LRU	(avg)
MQ	(avg)

Figure 3: Read traffic of linear with 128 KB cache blocks

Meanwhile, the ICN architecture natively provides a caching fea-
ture at the network layer, allowing it to deduplicate these requests
- “in-network caching”. In ICN networks, each node in the network,
whether an end host or intermediate network device, contains a
cache of recent data packets that traversed the forwarder running
on that host (the “ContentStore”). However, our evaluations only
consider caches within the network itself and exclude those on end
hosts, since a host will likely not request the same HDFS data again
within a short time frame. Therefore, we calculated the reduction
in total network traffic that resulted from using in-network caching
on a fat tree topology. For each benchmark application showing
promise for read applications in Section 2 (linear and lr), we con-
ducted an evaluation of the total network traffic across all nodes
while varying the cache size (powers of two from 20 to 210 MB)
and replacement policy on each host. As justified in Section 3, we
divided each HDFS block into cache blocks sized at 128 KB (includ-
ing the last in an HDFS block, regardless of its actual size). We also
conducted evaluations of the total network traffic with no caching,
as well as with unlimited cache space to find the maximum and
minimum bounds, respectively, in a given scenario – this allowed
us to determine the improvement brought by caching.

To evaluate the effect of caching, we compared the averaged total
traffic from our 10 seeded PRNG trials (for each combination of
application, cache block size, cache replacement policy, and cache
size at each node) with theminimum observed trafficwith unlimited
cache and the maximum observed traffic with no cache for each
application. The specific results for the benchmark applications
linear and lr are presented in Sections 5.1 and 5.2, respectively.

5.1 linear
With linear, which had a significantly larger total data transfer
size than lr, we discovered that in-network caching could signifi-
cantly reduce network traffic. However, the level to which traffic
was reduced variedwith the replacement policy. For comparison, we
discovered that, if unlimited-sized caches were used in the scenarios

On the Power of In-Network Caching in the Hadoop Distributed File System ICN ’19, September 24–26, 2019, Macao, China

	250

	300

	350

	400

	450

	500

	550

	600

	650

64 128 256 512 1024

To
ta
l	N
et
wo
rk
	T
ra
ffi
c	
(G
B)

Cache	Size	(MB)

Unlimited	(min)
No	Cache	(max)

2Q	(avg)
ARC	(avg)
LIRS	(avg)
LRU	(avg)
MQ	(avg)

Figure 4: Read traffic of linear with 128 KB cache blocks
using 2Q at the edge layer and LIRS at the aggregation layer

we evaluated for linear, total traffic in our scenarios could be re-
duced to only be approx. 45% of the total traffic with no in-network
caches. Notably, this is not the “perfect” reduction of approx. 81%
promised by the unique and total read data sizes in Section 2.2. This
is because of the large number of paths that traffic can take in the
fat tree topology, meaning that Interests will not necessarily cross
paths with a previously cached matching Data packet, even with
infinite cache capacity. The total traffic seen in linear with each
combination of parameters, including with unlimited cache and
with no cache, can be found in Figure 3.

With the evaluated cache sizes up to, but not including, 256
MB, no replacement policy appeared to significantly reduce the
amount of network traffic. However, with 256 MB of cache, the
LIRS replacement policy reduced total traffic to approx. 60% of the
total without caching. At this cache size, the other cache policies
did not significantly differ from their previous pattern of gradual
reduction, although MQ performed notably better than 2Q, ARC,
and LRU. When cache sizes were 512 MB, this pattern continued.

However, by the time cache sizes reached 1 GB, ARC performed
the best of the five policies, reducing total traffic to approx. 44.5%
of the total traffic without caching. LIRS, LRU, and MQ performed
reasonably well at this cache size, reducing traffic to approx. 52.1%,
53.6%, and 50.7% of the total traffic without caching, respectively.
Interestingly, 2Q performed the worst of the five evaluated policies
at 1 GB, performing significantly worse than LRU and only reducing
traffic to approx. 60.9% of the total traffic without caches.

Therefore, the best caching policy for linear at larger cache
sizes appears to be ARC. However, for smaller cache sizes, LIRS
appears to be the best option.

Multi-policy topologies. We also evaluated the effect of using
different replacement policies at each layer of the fat tree, given that
using a combination of replacement policies may produce lower
overall traffic levels than the uniform use of a single replacement
policy. Therefore, we evaluated the linear trace using a combi-
nation of the 2Q, ARC, LIRS, LRU, and MQ, resulting in a total of

	75

	80

	85

	90

	95

	100

	105

	110

	115

64 128 256 512 1024

To
ta
l	N
et
wo
rk
	T
ra
ffi
c	
(G
B)

Cache	Size	(MB)

Unlimited	(min)
No	Cache	(max)

2Q	(avg)
ARC	(avg)
LIRS	(avg)
LRU	(avg)
MQ	(avg)

Figure 5: Read traffic of lr with 128 KB cache blocks

125 series (with 5 cache sizes evaluated for each combination of
policies). The results for these evaluations were split into separate
figures by combination of edge and aggregation policy, with the
core policy being represented by the series within the figure. We
found that the results for each combination of edge and aggregation
policy followed four general patterns: those that were not signifi-
cantly different from the base result in Figure 3; those that reduced
total traffic from the base by a small, but significant margin; those
that reduced total traffic by a very significant amount; and those
whose effect fell somewhat between the latter two.

All of the configurations that reduced traffic the most featured
LIRS at the aggregation layer – we show the results with 2Q at
the edge layer and LIRS at the aggregation layer in Figure 4 as a
generalization of this class of results, as the rest of the results with
LIRS at the aggregation layer are very similar to this. Moreover, the
best results were seen with 1 GB cache sizes using ARC at the edge
and core layers and LIRS at the aggregation layer. ARC is intended
to act as a second-layer cache, so this explains its effectiveness at
the core layer [23]. Therefore, it appears that the best topology for
this type of workload would feature LIRS at the aggregation layer.

5.2 lr
The lr application also showed significant potential for reductions
in network traffic through the use of in-network caches for read
operations. However, likely due to the smaller data size of this
application compared to linear, all cache replacement policies
showed similar traffic reduction patterns to each other – this is
shown in Figure 5. In fact, the total network traffic seen with all
replacement policies almost converged with cache sizes of 1 GB,
with the range between policies being approx. 195 MB with 1 GB
caches. However, for all evaluated cache sizes less than 1 GB, LIRS
performed the best. LRU performed the worst at evaluated cache
sizes up to and including 256 MB. Meanwhile, 2Q performed the
worst when caches could store 512 MB and 1 GB.

With lr, caches of unlimited size were able to reduce traffic to
approx. 70.3% of the total traffic with no caching. However, at the

ICN ’19, September 24–26, 2019, Macao, China Eric Newberry and Beichuan Zhang

	75

	80

	85

	90

	95

	100

	105

	110

	115

64 128 256 512 1024

To
ta
l	N
et
wo
rk
	T
ra
ffi
c	
(G
B)

Cache	Size	(MB)

Unlimited	(min)
No	Cache	(max)

2Q	(avg)
ARC	(avg)
LIRS	(avg)
LRU	(avg)
MQ	(avg)

Figure 6: Read traffic of lr with 128 KB cache blocks using
LIRS at the edge layer and MQ at the aggregation layer

largest evaluated cache size (1 GB), all the replacement policies
were able to reduce traffic to approx. 3 GB above the total traffic
with unlimited cache sizes (approx. 82 GB vs. 79 GB), out of a
total observed traffic size without caching of approx. 113 GB. This
indicates that caching is very effective for lr, even with only 1 GB
of cache on each switch in the network.

However, while increases in cache size produced increasing re-
ductions in total network traffic up to cache sizes of 512 MB, from
512 MB to 1 GB, total traffic does not reduce as significantly. There-
fore, 512 MB appears to be the best of the evaluated cache sizes for
use with lr, especially when LIRS or ARC are utilized.

Multi-policy topologies. As with linear, we evaluated the ef-
fect of using different replacement policies at each layer of the
topology with the lr trace. Of these, the best performing scenarios
were those that used LIRS at the edge layer, with the choice of
the replacement policies at the other layers having little impact on
the results. To represent this class of results, Figure 6 shows the
results when LIRS was used at the edge layer and MQ was used
at the aggregation layer. However, it is notable that the error bars
(representing the min and max values observed for that datapoint)
are significant, indicating that some configurations of each scenario
(based upon the chosen end host placement PRNG seed) varied
significantly from the average. However, the total range was less
than 10 GB. Therefore, it appears that the best choice of policy for
lr is LIRS at all layers of the fat tree.

6 CONCLUSION
We have demonstrated the benefits that in-network caching can
provide to big data applications running on top of the Hadoop
Distributed File System by reducing the total amount of traffic sent
over cluster networks. We have used different replacement policies
to evaluate the caching potential of ICN in big data applications.

Our results suggest that, overall, LIRS and ARC provide the best
performance for in-network caching in HDFS deployments in fat
trees, a common data center topology. Generally, we found that

LIRS performed the best for smaller cache sizes and ARC performed
the best for larger cache sizes. In addition, by combining LIRS and
ARC at different layers of the fat tree topology, we were able to
provide better performance in the larger of our two application
traces.

While the in-network caching architecture we used for our evalu-
ations was based upon that used in ICN, the key feature that enables
the benefits we observed is the mapping of data name to content
at the network layer, a central feature of ICN, and the knowledge
of this mapping on forwarders in the network. However, ICN ar-
chitectures can provide many additional benefits to distributed file
systems beyond caching. This includes the ability to implicitly re-
trieve data from multiple sources and over multiple paths, as well
as a stateful forwarding plane that can detect failures and discover
alternative paths. These features would allow distributed file sys-
tems to be more resilient to failure, as well as increase the efficiency
of data retrieval.

6.1 Future Work
While fat-trees are an effective data center topology, other data
center topologies have been developed and utilized in real environ-
ments. These include the more traditional two- and three-tier archi-
tectures [16], BCube [9], DCell [10], PortLand [27], SEATTLE [15],
and VL2 [8]. Alternative topologies may produce different results
than fat-trees. However, we believe the fat-tree topology to contain
many features generally present in data center environments, in-
cluding path redundancy and “tapering” of links as one approaches
the core layer of the network. Therefore, we believe our results are
generally applicable to data center environments and not simply to
those that use the fat tree topology.

We conducted our evaluations using the 2Q, ARC, LIRS, LRU, and
MQ cache replacement policies. However, this is only a subset of
the many replacement policies in existence. Additional replacement
policies that we would like to evaluate include LRFU [17] and LRU-
K [28]. This would increase the breadth of our evaluations, as other
replacement policies may display significantly better or worse hit
ratios than the five we evaluated in this paper.

Additionally, while we chose our target cache block size by
weighing the costs and benefits of greater caching granularity ver-
sus the overhead of a large number of network requests, it would
be good to conduct a thorough evaluation to determine the optimal
cache block size for this environment.

Moreover, further work should be conducted to evaluate the
overall benefits that ICN networks can provide to distributed file
systems. This includes implicit multisource and multipath retrieval
and the stateful forwarding plane, as mentioned previously, among
other benefits – these mechanisms can lead to enhanced file system
resiliency and efficiency. Additionally, while our proposed HDFS de-
sign retains the NameNode from the standard design to coordinate
operations, it would be good to evaluate whether some or all of its
functionalities could be decentralized through ICN mechanisms.

ACKNOWLEDGMENTS
The authors would like to thank Ali Anwar and Ali R. Butt of
Virginia Tech for contributing to our understanding of Hadoop and
Spark system behavior. Additionally, we would like to thank our

On the Power of In-Network Caching in the Hadoop Distributed File System ICN ’19, September 24–26, 2019, Macao, China

shepherd, Börje Ohlman, as well as Hamed Yousefi, Teng Liang, and
the anonymous reviewers for their helpful feedback on the paper.
Moreover, we thank Mathias Gibbens for his technical assistance
and Navdeep Singh for his contributions to trace collection and
tool development.

This work was supported by the National Science Foundation
under award CNS-1629009.

REFERENCES
[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. 2012. A

survey of information-centric networking. IEEE Communications Magazine 50, 7
(July 2012), 26–36. https://doi.org/10.1109/MCOM.2012.6231276

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-
able, commodity data center network architecture. ACM SIGCOMM Computer
Communication Review 38, 4 (2008), 63–74.

[3] Apache Software Foundation. [n. d.]. PoweredBy - Hadoop Wiki. https:
//cwiki.apache.org/confluence/display/HADOOP2/PoweredBy

[4] Apache Software Foundation. 2018. Centralized Cache Management in
HDFS. https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/
CentralizedCacheManagement.html

[5] Apache Software Foundation. 2018. HDFS Architecture. https://hadoop.apache.
org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

[6] Robert Chansler, Hairong Kuang, Sanjay Radia, Konstantin Shvachko, and Suresh
Srinivas. 2012. The Hadoop Distributed File System. In The Architecture of
Open Source Applications, Amy Brown and Greg Wilson (Eds.). Vol. 1. lulu.com,
Chapter 8.

[7] Mathias Gibbens, Chris Gniady, Lei Ye, and Beichuan Zhang. 2017. Hadoop
on named data networking: experience and results. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 1, 1 (June 2017), 2.

[8] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM ’09).
ACM, New York, NY, USA, 51–62. https://doi.org/10.1145/1592568.1592576

[9] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: AHigh Performance,
Server-centric Network Architecture for Modular Data Centers. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM ’09).
ACM, New York, NY, USA, 63–74. https://doi.org/10.1145/1592568.1592577

[10] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. 2008. Dcell: A Scalable and Fault-tolerant Network Structure for Data Centers.
In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication
(SIGCOMM ’08). ACM, New York, NY, USA, 75–86. https://doi.org/10.1145/
1402958.1402968

[11] A K M Mahmudul Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang,
Lixia Zhang, and Lan Wang. 2013. NLSR: Named-data Link State Routing Proto-
col. In Proceedings of the 3rd ACM SIGCOMM Workshop on Information-centric
Networking (ICN ’13). ACM, New York, NY, USA, 15–20. https://doi.org/10.1145/
2491224.2491231

[12] Intel Corporation. [n. d.]. HiBench. https://github.com/intel-hadoop/HiBench
[13] Song Jiang and Xiaodong Zhang. 2002. LIRS: an efficient low inter-reference

recency set replacement policy to improve buffer cache performance. ACM
SIGMETRICS Performance Evaluation Review 30, 1 (2002), 31–42.

[14] Theodore Johnson, Dennis Shasha, et al. 1994. 2Q: a low overhead high per-
formance bu er management replacement algorithm. In Proceedings of the 20th
International Conference on Very Large Data Bases. 439–450.

[15] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. 2008. Floodless in
Seattle: A Scalable Ethernet Architecture for Large Enterprises. In Proceedings
of the ACM SIGCOMM 2008 Conference on Data Communication (SIGCOMM ’08).
ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/1402958.1402961

[16] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. 2012. GreenCloud:
a packet-level simulator of energy-aware cloud computing data centers. The
Journal of Supercomputing 62, 3 (01 Dec 2012), 1263–1283. https://doi.org/10.
1007/s11227-010-0504-1

[17] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. 2001. LRFU: A spectrum of policies that subsumes
the least recently used and least frequently used policies. IEEE transactions on
Computers 50, 12 (2001), 1352–1361.

[18] Vince Lehman, Ashlesh Gawande, Rodrigo Aldecoa, Dmitri Kiroukov, Beichuan
Zhang, Lixia Zhang, and Lan Wang. 2016. An Experimental Investigation of
Hyperbolic Routing with a Smart Forwarding Plane in NDN. Technical Report
NDN-0042. NDN Project.

[19] Vince Lehman, Ashlesh Gawande, Beichuan Zhang, Lixia Zhang, Rodrigo
Aldecoa, Dmitri Krioukov, and Lan Wang. 2016. An experimental investiga-
tion of hyperbolic routing with a smart forwarding plane in NDN. In 2016
IEEE/ACM 24th International Symposium on Quality of Service (IWQoS). 1–10.
https://doi.org/10.1109/IWQoS.2016.7590394

[20] Vince Lehman, A K M Mahmadul Hoque, Yingdi Yu, Lan Wang, Beichuan Zhang,
and Lixia Zhang. 2016. A Secure Link State Routing Protocol for NDN. Technical
Report NDN-0037. NDN Project.

[21] C. E. Leiserson. 1985. Fat-trees: Universal networks for hardware-efficient
supercomputing. IEEE Trans. Comput. C-34, 10 (Oct 1985), 892–901. https:
//doi.org/10.1109/TC.1985.6312192

[22] S. Mastorakis, P. Gusev, A. Afanasyev, and L. Zhang. 2018. Real-Time Data
Retrieval in Named Data Networking. In 2018 1st IEEE International Conference
on Hot Information-Centric Networking (HotICN). 61–66. https://doi.org/10.1109/
HOTICN.2018.8605992

[23] Nimrod Megiddo and Dharmendra S Modha. 2003. ARC: A Self-Tuning, Low
Overhead Replacement Cache.. In FAST, Vol. 3. 115–130.

[24] Named Data Networking Project Team. [n. d.]. Data Packet. https://named-data.
net/doc/NDN-packet-spec/current/data.html

[25] Named Data Networking Project Team. [n. d.]. Interest Packet. https:
//named-data.net/doc/NDN-packet-spec/current/interest.html

[26] Named Data Networking Project Team. [n. d.]. NFD Readme. https://github.
com/named-data/NFD/blob/master/README.md

[27] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.
2009. PortLand: A Scalable Fault-tolerant Layer 2 Data Center Network Fabric.
In Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication
(SIGCOMM ’09). ACM, New York, NY, USA, 39–50. https://doi.org/10.1145/
1592568.1592575

[28] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K
Page Replacement Algorithm for Database Disk Buffering. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data (SIGMOD
’93). ACM, New York, NY, USA, 297–306. https://doi.org/10.1145/170035.170081

[29] Junxiao Shi, Eric Newberry, and Beichuan Zhang. 2017. On broadcast-based
self-learning in named data networking. In 2017 IFIP Networking Conference (IFIP
Networking) and Workshops. 1–9. https://doi.org/10.23919/IFIPNetworking.2017.
8264832

[30] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos,
K. V. Katsaros, and G. C. Polyzos. 2014. A Survey of Information-Centric Net-
working Research. IEEE Communications Surveys Tutorials 16, 2 (Second 2014),
1024–1049. https://doi.org/10.1109/SURV.2013.070813.00063

[31] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan Zhang,
and Lixia Zhang. 2013. A case for stateful forwarding plane. Computer Commu-
nications 36, 7 (2013), 779 – 791. https://doi.org/10.1016/j.comcom.2013.01.005

[32] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2–2.

[33] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,
Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. 2014. Named data
networking. ACM SIGCOMM Computer Communication Review 44, 3 (July 2014),
66–73.

[34] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An Overview of Security
Support in Named Data Networking. IEEE Communications Magazine 56, 11
(November 2018), 62–68. https://doi.org/10.1109/MCOM.2018.1701147

[35] Yuanyuan Zhou, James Philbin, and Kai Li. 2001. The Multi-Queue Replace-
ment Algorithm for Second Level Buffer Caches.. In USENIX Annual Technical
Conference, General Track. 91–104.

https://doi.org/10.1109/MCOM.2012.6231276
https://cwiki.apache.org/confluence/display/HADOOP2/PoweredBy
https://cwiki.apache.org/confluence/display/HADOOP2/PoweredBy
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/1402958.1402968
https://doi.org/10.1145/1402958.1402968
https://doi.org/10.1145/2491224.2491231
https://doi.org/10.1145/2491224.2491231
https://github.com/intel-hadoop/HiBench
https://doi.org/10.1145/1402958.1402961
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.1109/IWQoS.2016.7590394
https://doi.org/10.1109/TC.1985.6312192
https://doi.org/10.1109/TC.1985.6312192
https://doi.org/10.1109/HOTICN.2018.8605992
https://doi.org/10.1109/HOTICN.2018.8605992
https://named-data.net/doc/NDN-packet-spec/current/data.html
https://named-data.net/doc/NDN-packet-spec/current/data.html
https://named-data.net/doc/NDN-packet-spec/current/interest.html
https://named-data.net/doc/NDN-packet-spec/current/interest.html
https://github.com/named-data/NFD/blob/master/README.md
https://github.com/named-data/NFD/blob/master/README.md
https://doi.org/10.1145/1592568.1592575
https://doi.org/10.1145/1592568.1592575
https://doi.org/10.1145/170035.170081
https://doi.org/10.23919/IFIPNetworking.2017.8264832
https://doi.org/10.23919/IFIPNetworking.2017.8264832
https://doi.org/10.1109/SURV.2013.070813.00063
https://doi.org/10.1016/j.comcom.2013.01.005
https://doi.org/10.1109/MCOM.2018.1701147

	Abstract
	1 Introduction
	2 Motivation
	2.1 HDFS Write Operations
	2.2 HDFS Read Operations

	3 Design
	3.1 Network and Caching Behavior
	3.2 Multi-Layer Caching Hierarchy
	3.3 File System Mechanics

	4 Evaluation Environment
	5 Evaluation
	5.1 linear
	5.2 lr

	6 Conclusion
	6.1 Future Work

	Acknowledgments
	References

