
NDN, Technical Report NDN-0070, 2021. http://named-data.net/techreports.html
Revision 1: January 16, 2021

NDN Forwarder Manager: Improving the Usability of
NDN Forwarders

Xinyu Ma
UCLA

xinyu.ma@cs.ucla.edu

Eric Newberry
UCLA

enewberry@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Up to now, configuring NDN for use on end hosts has gen-
erally been difficult due to the absence of graphical con-
figuration interfaces. To improve the usability of NDN, we
have developed the NDN Forwarder Manager (NDN-FM).
NDN-FM provides a graphical interface for users to man-
age a local instance of the NDN Forwarding Daemon (NFD),
allowing them to monitor the status of the forwarder; cre-
ate, update, and delete faces and routes; manage certificates;
and run basic NDN debugging tools. NDN-FM can also be
used to manage other NDN packet forwarders that support
the NFD Management Protocol. In this report, we describe
the implementation of NDN-FM, discuss the rationale for
the design choices that were made during its development,
and demonstrate the use cases of NDN-FM from the per-
spective of system administrators and end users to illustrate
NDN-FM’s improvements to NDN usability.

1 INTRODUCTION
Named Data Networking (NDN) is a new network architec-
ture which lets applications communicate with each other by
fetching named, secured chunks of data. This differs from tra-
ditional TCP/IP network architectures, which deliver packets
to destination host addresses. The development of a funda-
mentally new network architecture necessitates the develop-
ment of new management systems for packet forwarders.

However, up to this point, configuring NDN for use on end
hosts has been difficult. In contrast to today’s user-friendly
graphical tools for configuring traditional networking equip-
ment, such as wireless routers, one needs familiarity with
command line tools to configure an NDN node. To illus-
trate this point, we will use the NDN Forwarding Daemon
(NFD) [17], an NDN forwarder intended for use in general-
purpose computing environments, as an example. At the
present time, NFD is generally configured using a combina-
tion of a configuration file and command line tools. Upon
startup, NFD automatically loads a configuration file, which
provides “startup configuration”. Meanwhile, the remaining
portion of the forwarder configuration (the “runtime config-
uration”) is provided through the nfdc [19] command line
utility. Additionally, the ndnsec [16] command line utility is
used to manage the NDN security configuration of the local
host.

An earlier effort was made to create a graphical man-
agement interface for NFD [10]; however, the result was
platform-specific and did not keep up with the pace of the
NDN platform’s development. However we do note the ex-
istence of a standardized management protocol [18], which
allows NFD, and any other forwarder supporting this proto-
col, to be configured over native NDN protocols.
In this report we present the NDN Forwarder Manager

(NDN-FM)1 which offers a graphical, browser-based manage-
ment interface for NDN forwarders. Utilizing a browser-
based interface provides significant benefits over a stan-
dalone program, including simplified deployment and cross-
platform support. NDN-FM allows end users to perform a
number of operations critical to configuring and managing a
local instance of a forwarder, including: monitoring the sta-
tus of the forwarder; creating, updating, and deleting faces
and routes; managing certificates; and running basic debug-
ging tools. In this report, we describe the implementation
of NDN-FM, discuss the rationale behind the design choices
made during its development, and demonstrate the use cases
of NDN-FM. We explain how NDN-FM provides increased
usability for the deployment of NDN forwarders for both
skilled NDN system administrators and end users with less
knowledge about the inner workings of NDN forwarders
and networks. We hope that this tool will ease the deploy-
ment and management of NDN instances on end devices on
various types of networks and by users of various skill levels.

This report is organized as follows: Section 2 introduces
NFD and its configuration and monitoring mechanisms and
protocols. Section 3 introduces the design of NDN-FM. Sec-
tion 4 discusses the implementation details of NDN-FM. Sec-
tion 5 evaluates the usability of NDN-FM as compared to
existing command-line management tools. Section 6 com-
pares NDN-FM and the original NDN Control Center, and
discusses the different design choices taken during the devel-
opment of each. Finally, Section 7 provides a plan of future
improvements and extensions to NDN-FM.

2 BACKGROUND
This section introduces the core NDN software as well as the
options that can be configured. We assume that the reader
has basic knowledge of how NDN works, including topics
1The code is available on GitHub: https://github.com/zjkmxy/ndn-cc

1

http://named-data.net/techreports.html
https://github.com/zjkmxy/ndn-cc


Xinyu Ma, Eric Newberry, and Lixia Zhang

like Interest-Data exchange and the essentials of the NDN
forwarding pipeline. For readers unfamiliar with these topics,
we recommend [1].

2.1 NDN Software
A typical NDN-capable host runs several core software com-
ponents. We now discuss each component, as well as the
specific implementation we use for each:

• A library implementing the core NDN primitives,
including Interest-Data exchange, security primitives,
and the management protocol. In this paper, we will
use ndn-cxx, which is written in C++ [11].

• A tool to configure the NDN security infrastructure
on the local device. In this paper, we will use ndnsec,
which is included as part of the ndn-cxx package [16].

• An NDN forwarder. In this paper, we will use NFD,
which is built on top of ndn-cxx [17].

• A forwarder configuration tool. In this paper, we will
use nfdc, a command line configuration tool [19] for
NFD.

• A collection of basic tools for NDN, providing utilities
for, among other purposes, “pinging” NDN prefixes
and inspecting NDN packets. In this paper, we will
use ndn-tools, which is implemented on top of ndn-
cxx [12].

A host on an NDN network needs to install at the very
minimum ndn-cxx and NFD (or equivalents). Most hosts will
also have nfdc and ndn-tools installed for configuration and
debugging.
While other forwarders have been developed for NDN

(such as ndn-lite [13] and NDN-DPDK [22]), NFD is the only
forwarder currently deployed on the official NDN testbed. As
such, it is a core component of the NDN platform. It consists
of six modules: the “Core”, “Faces”, “Tables”, “Forwarding”,
“Management”, and the “Routing Information Base (RIB)Man-
ager” [2]. The Core module provides common functionality
for the other modules. The Faces module implements NDN
network interfaces on top of different protocols, including
UDP, TCP, and Ethernet for remote faces, as well as Unix
sockets, WebSockets, and TCP for local faces [2] (See § 2.2.2).
The Tables module implements the Content Store (CS), the
Pending Interest Table (PIT), the Forwarding Information
Base (FIB), strategy choices, and other tables. The Forwarding
module implements the central packet processing pipelines
and interacts with the Faces and Tables modules (See § 2.2.3).
The Management module implements the NFD management
protocol, which allows applications and users to monitor the
state of NFD, as well as configure Faces, FIB entries, strategy
choices, and so on (except the RIB, whose management is

handled in a separate module). It also parses the configu-
ration file and handles startup configuration2. Finally, the
RIB Management module manages routing information and,
while using the same management protocol as the Manage-
ment module, is implemented in a separate thread from the
rest of management for scalability reasons, given the high
cost of RIB manipulation [2].
NDN-FM provides a graphical interface for users to ob-

serve information obtained from the NFD management pro-
tocol and ndnsec, as well as to allow them to perform various
common management operations. Among other operations,
users can add/delete faces, FIB entries, and strategy choices,
as well as manage local identities via NDN-FM.

2.2 NFD Configuration
The following four systems must be configured in order
to properly set up an NDN host running NFD: (1) security,
(2) faces, (3) forwarding (including routes), and (4) strategies.
These configuration steps are traditionally performed using
the command line tools bundled with NFD and ndn-cxx.
However, these tools are not user-friendly to home users.

2.2.1 Security. NDN integrates security primitives into the
network layer to verify the provenance of data both in transit
and at rest [27]. Additionally, NFD’s management systems
rely heavily upon these security primitives to authenticate
management commands. Therefore, security bootstrapping
must be performed before any other management or configu-
ration steps can be completed. To accomplish this, the system
must obtain a name and any associated keypairs and cer-
tificates [26]. NFD’s default trust model utilizes self-signed
certificates that permit users on the local host to perform
any management tasks. However, this trust model can be
modified to restrict or permit access to different components
of management by a user possessing a given key.
To generate an initial usable NFD security configuration,

traditionally one would use ndnsec-keygen to generate an
identity and self-signed certificate and then install these with
ndnsec-install-cert. This allows NFD management to be
accessed locally (relying on a local trust anchor). However,
to allow local applications to validate content retrieved from
an existing NDN network and produce content that can be
validated beyond the current host, it is necessary to learn
the network’s trust anchor(s) and then obtain a certificate
from this anchor. This can be accomplished using other tools,
such as ndncert [15].

2.2.2 Faces. To establish connectionswith other nodes, users
need to create faces to these hosts. A face is a generalization

2Since startup configuration is not the focus of this paper, when we refer
to “configuration” in the following sections, we always mean “runtime
configuration”.

2



NDN Forwarder Manager: Improving the Usability of NDN Forwarders

that can represent either a network interface or an application
interface. A network face is a connection to the forwarder
on a remote host. Unlike the TCP/IP protocol stack, NDN
does not make a strict distinction between the network and
link layers. This means that NDN can run directly on top of
standard link layer protocols, such as Ethernet, WiFi, and
Bluetooth, but can also operate as an overlay network on top
of higher layer protocols such as UDP, TCP, or WebSockets
(which in turn run on top of IP). Network faces can be either
unicast (to a single remote forwarder) or multicast (to one
or more remote forwarders). Meanwhile, an application face
is a connection to an NDN application. Generally, this takes
the form of a Unix socket or TCP connection. Application
faces are created and deleted implicitly when an application
connects to and disconnects from the forwarder and their
creation and deletion is therefore generally outside of the
scope of forwarder configuration operations.

Traditionally, faces between forwarders have been created
and modified using the nfdc face create command, and
deleted using the nfdc face delete command [19]. The
first command supports a number of options that can modify
the behavior of the face and are documented in the nfdc
manpages [19]. To create a face, one needs to know the
protocol and the address of the remote forwarder (including
the port number, if necessary for the underlying transport
protocol in use). For example, ucp6://192.168.1.1:6363
specifies a network face running over UDP.

2.2.3 Forwarding. NFD contains a Forwarding Information
Base (FIB), which stores pairs of the format (name prefix,
outgoing faces), to find the appropriate nexthop(s) when
forwarding Interests [25]. While forwarding rules can be
added directly to the FIB, it is recommended to add them
via NFD’s Routing Information Base (RIB) instead. The RIB
contains two types of rules: (1) Those added by routing pro-
tocols (if any are in use), as well as prefix registrations by
directly connected applications and remote forwarders using
automatic prefix propagation [24]. (2) Those added manually
by administrators using nfdc route add. The former are
outside of the scope of the NFD management tools used by
end users, so we will only consider the latter in this paper.

2.2.4 Strategies. Forwarding strategies determine whether,
when, and where to forward Interests. By default, the best-
route strategy is used, which forwards a single Interest to the
nexthop with the lowest cost in the longest matching prefix
FIB entry [2]. However, forwarding strategies have great
flexibility in their behavior. For example, the multicast strat-
egy forwards Interests to all nexthops listed in the longest
matching prefix FIB entry and the asf strategy forwards to
the upstream host with the lowest measured RTT [2]. The
nfdc strategy set command is used to set a forwarding

strategy for a name prefix, with strategies applying hierar-
chically [19].

During our experience developing the NDN platform, we
found that it can be difficult to remember how to perform
management tasks entirely via the command line. We imag-
ine this would especially be the case for end users with less
domain-specific knowledge than ourselves. Therefore, we
have developed NDN-FM to provide a more familiar mech-
anism for users to manage local forwarders and hopefully
ease the deployment of NDN in future networks.

3 DESIGN
We have developed the NDN Forwarder Manager (NDN-FM)
to simplify the management of NDN forwarders that imple-
ment the NFD Management Protocol [18]. At the time of
writing, only the NFD forwarder itself implements this pro-
tocol, but this general purpose NDN management protocol
could be implemented by another forwarder at some point
in the future. Additionally, we support the various security
operations needed to authenticate management operations
and support local applications running on the same host. In
the remainder of this section, we discuss the design goals
of NDN-FM (§ 3.1), provide an overview of the design of
NDN-FM (§ 3.2), and discuss the specific features supported
by NDN-FM at the time of writing (§ 3.3).

3.1 Design Goals
The central goal of NDN-FM is to provide a usable, gen-
eral, and flexible management solution for NDN forwarders.
This is because, while at the moment NDN deployments
are limited to research and development environments, they
will eventually roll out into end-user environments. End
users will likely need to configure and manage their local
forwarders to at least some extent, as is commonly necessary
for wireless routers in home and small business environ-
ments. NDN-FM is intended to be used directly by end users
with varying levels of technical knowledge, so it must sat-
isfy the three principles stated above. More specifically, it
satisfies each principle like so:

• Usability. NDN-FM integrates frequently used for-
warder management functions into a browser-based
GUI. This relieves users of the burden of having to
remember the nfdc commands needed to perform
various NFD forwarder management operations. In-
stead, the user interface is organized into reasonable
categories that allow users to quickly find the oper-
ation they wish to perform. Moreover, NDN-FM is
easy to install and run, being based upon standard,
cross-platform Python libraries.

3



Xinyu Ma, Eric Newberry, and Lixia Zhang

• Generality. NDN-FM supports all operating systems 3

that can run NFD and Python 3. Since it controls
NFD via the OS-independent NFD Management pro-
tocol [18], no operating system-specific differences
are presented to the user.

• Flexibility. The NFD Management protocol provides
a standardized mechanism through which a wide va-
riety of management operations can be performed.
Therefore, NDN-FM implements a number of man-
agement operations of varying levels of complexity
and frequency of use. This includes common oper-
ations like route and face configuration, as well as
more advanced operations like security management.

In future widely-deployed NDN networks, forwarders on
each device will serve as a gateway for application connectiv-
ity to the wider network and perform a very similar role to
that of today’s home wireless routers. This not only matches
the level of configuration required in today’s IP networks,
but goes beyond it, as packet forwarders must be configured
on every end devices in addition to on intermediate network
hardware. Therefore, similar tools to those available for wire-
less routers today must be developed for NDN forwarders
that satisfy the above-listed requirements.

3.2 System Overview
NDN-FM provides a browser-based graphical user interface
to interact with users and to process user queries and com-
mands. The user’s browser communicates with the NDN-FM
backend using HTTP. Meanwhile, the backend communi-
cates with the forwarder (e.g., NFD) using the NDN-based
NFDManagement protocol [18] to query the status of the for-
warder and perform various management operations. This
design is shown in Figure 1.

NDN-FM

Browser

NFD

HTTP

NFD Mgmt

Host

Figure 1: Design Overview

NDN-FM provides an icon on the system tray, which is
used as a shortcut to the user interface and to allow the user
to quit the application.

3While NFD officially supports a number of recent versions of Ubuntu and
macOS, it has also been unofficially reported to run successfully on other
platforms, such as recent versions of Debian, Gentoo, and Raspbian [7].

3.3 Supported Features
With NDN-FM, users can view, create, and delete faces and
routes, as well as set strategies for given name prefixes. Ad-
ditionally, users can modify the local security keychain, in-
cluding adding and deleting identities, keys, and certificates.
Moreover, users can view the status of the forwarder (includ-
ing many counters), perform basic reachability tests, and
even automatically connect to the nearest NDN Testbed [14]
node.

4 IMPLEMENTATION
NDN-FM is implemented in Python 3, using python-ndn [5]
and aiohttp [3] to realize the NDN-based management and
user-facing HTTP interfaces, respectively. NDN-FM consists
of two modules: a backend module and a system tray module.
The backend module processes user input and obtains status
information from the forwarder. Meanwhile, the system tray
module provides an icon in the system tray (Figure 2).

NDN-FM

System Tray

Backend
HTTP server

NDN backend

Figure 2: Components of NDN-FM

4.1 Backend Module
The backend module consists of two components, an aiohttp
server and a python-ndn application. The aiohttp server re-
sponds to HTTP requests and translates between HTTP’s
request-response paradigm and NDN’s Interest-Data par-
adigm. Meanwhile, the python-ndn component expresses
these Interests and waits for corresponding Data. It also sub-
scribes to face status change notifications from the NDN
Management Protocol [18] and records such events.
The NFD Management Protocol is made up of “status

datasets”, “notification streams”, and “control commands”.
Operations to query status datasets and issue control com-
mands require a single Interest-Data exchange. Therefore,
these two types of operations are blocking within the back-
end module. Meanwhile, notification streams operate via
long-lasting polling Interests. Both of these types of opera-
tions run in the same thread.

4.2 System Tray Module
The system tray module uses pystray [23], a lightweight,
cross-platform system tray module for Python, to display

4



NDN Forwarder Manager: Improving the Usability of NDN Forwarders

a tray icon and the associated menu. By using psytray, we
avoid including the entire PyQt package and therefore reduce
the footprint of NDN-FM.
The system tray menu utilizes a shell command to per-

form various operations on the host system. In particular,
to open the user interface, it uses xdg-open on Linux and
open on macOS. Additionally, to start NFD, it runs pkexec
nfd-start on Linux. This method assumes the paths to NFD
and its command line tools are included in the PATH envi-
ronment variable.

4.3 Usage
Since NDN-FM is written in Python, it can run without the
need for prior compilation and can be run using the com-
mand python3 main.py. Additionally, we have created a
macOS app that also bundles a recent version of Python 3,
which can be installed by copying the app to the “Applica-
tions” folder. After starting NDN-FM, a system tray icon will
appear – users can open the NDN-FM page from this icon.

4.4 System Requirements
NDN-FM officially supports Linux (Ubuntu and Raspbian)
and macOS. However, it likely runs on other Linux distri-
butions, but these environments have not been evaluated.
Moreover, since the UI of NDN-FM is written in standard
HTML, CSS, and JavaScript, it is assumed to be compati-
ble with any modern web browser. We have tested it with
Chrome (Chromium on Raspbian), Firefox, and Safari.
In our evaluations, we found the memory usage of the

macOS app to be less than 50 MB in terms of resident set size,
which is less than reported by the NDN Control Center [10].
Meanwhile, the required disk space for this macOS package,
including the packaged Python3 interpreter, is 126 MB.

5 USABILITY EVALUATION
In this section, we evaluate three management operations
that can be performed by NDN-FM by comparing them
against identical operations performed using the nfdc com-
mand line tool [19].

5.1 Face Management
Before configuring routes, a user must first configure the for-
warder’s face table. Generally, when a user wishes to connect
a specific set of NDN nodes manually instead of connecting
to the nearest testbed hub, they need to create faces directly
using the IP addresses (or other network identifiers) of those
nodes.

To allow for this, NDN-FM provides a page for face man-
agement (Figure 3). On this page, users are provided with
a list of faces sorted by face ID (in ascending order). They
can remove faces using a “Remove” button to the right of

every face. By default, all information about the face except
the face ID and remote URI is hidden to provide a cleaner
interface to the user. However, users can access more de-
tailed information about a face, including its properties and
statistics (e.g., counters), by clicking the triangle icon near
the remote face URI. A form at the bottom of the page can
be used to create a new face by specifying the remote URI
of the new face. At the moment, NDN-FM only supports
creating UDP and TCP faces (hence the label of “IP Addr” for
the remote URI), but support for creating Ethernet faces is
planned for future work 4.
The CLI tool nfdc supports all of the above-mentioned

functions, but is not as easy to use as NDN-FM. The com-
mand nfdc face list shows a list of all faces. However, all
properties are printed on one line, requiring users to manu-
ally parse out the information. Additionally, the command
nfdc face destroy removes a face. The face to remove can
be specified using either face ID or remote URI. Finally, the
command nfdc face create creates a face. At a high level,
these commands works similarly to NDN-FM, although they
provide more control to the user as far as setting face prop-
erties. Currently, users cannot change face properties using
NDN-FM and can only perform the coarse-grained actions
of face creation and removal.

5.2 Route Management
If a routing protocol or other configuration mechanism (such
as ndn-autoconfig [9]) is not used, users will need to man-
ually configure all routes. One current use case for this NDN-
FM feature is an NDN application developer testing their
application on their own devices.

NDN-FM provides a page for route management (Figure 4).
This page shows a list of routes grouped by name prefix.
Users can click the “Remove” button to remove a specific
route and can add new routes by specifying a name prefix
and nexthop face ID (adding via remote face URI is planned
for future work). During face creation, we do not provide
options to set the “cost” or “origin” of the route. It is not
necessary to allow these parameters to be set as they are not
utilized when no routing protocol is deployed.
The CLI tool nfdc supports the addition and removal of

routes. nfdc route list prints a list of all routes. This list
is sorted by name prefix, although routes are not aggregated
by name prefix as they are in NDN-FM. nfdc route show
prints the routes for a specific name prefix. Users can use
nfdc route add and nfdc route remove to add and remove
routes.

4At the time of writing, NDN-FM face creation has only been tested with
IPv4 addresses.

5



Xinyu Ma, Eric Newberry, and Lixia Zhang

(a) A list of all faces. (b) The details of a face. (c) The form used to create a new face.

Figure 3: The face management page of NDN-FM.

Figure 4: The route management page of NDN-FM.

5.3 Keychain Management
To publish content on a NDN network, users need to ensure
that each node possesses the appropriate keys to sign data
it creates. To this end, NDN-FM provides a page to manage
the ndn-cxx security keychain (Figure 5). This page renders
Identity–Key–Certificate relationships as a tree. Each node
is folded by default and nodes can be expanded by clicking
on the triangle located to the left of each entry. Additionally,
users can add a keywith a self-signed certificate to an identity
by clicking on the corresponding “Add Key” link. They can
also delete a specific identity, key, or certificate by clicking
on the corresponding “Delete” link. Moreover, at the bottom
of the page, there is a form that allows users to create new
identities.

The CLI tool ndnsec supports all of these functions. ndnsec
list prints the tree of certificates. However, its verbosity
can only be specified globally, meaning that it most likely
presents a large amount of extraneous data to the user. There-
fore, when users wish to obtain the details of a specific cer-
tificate, ndnsec’s output will likely either be too brief or too
verbose. Next, ndnsec delete is used to delete a keychain
object, but users need to know the full name of the object to

Figure 5: The keychain management page of NDN-FM.

delete before invoking this command. Additionally, the type
of object can be specified: “-k” for keys, “-c” for certificates,
or no option for identities. Finally, ndnsec key-gen is used
to create a new identity or key.

6 DISCUSSION
There are two main differences between NDN-FM and the
NDN Control Center [10]: (i) NDN-FM uses a “browser user
interface” (or “BUI”), while the NDN Control Center uses a
traditional, desktop-based GUI. (ii) NDN-FM does not bundle
a copy of NFD, while the NDN Control Center does. We
elaborate on these differences in this section.

6



NDN Forwarder Manager: Improving the Usability of NDN Forwarders

6.1 Browser User Interface
NDN-FM uses a browser user interface (or “BUI”) to sim-
plify our implementation and provide easier cross-platform
support. As more and more functionalities are added to front-
end frameworks, almost all the needs of a GUI can be imple-
mented in web pages. As a result, many modern pieces of
software have been written using BUIs, such as Slack and
Discord [4]. Using a BUI makes it possible for us to exploit
existing front-end frameworks, allowing for easier develop-
ment. On the other hand, the structure of Python packages
requires that the full Qt package be installed, which increases
the size of the NDN-FM package.

6.2 Decoupling Management from NFD
Unlike the NDN Control Center, NDN-FM does not bundle
NFD. The reason for this decoupling is threefold:

(1) NDN-FM is designed to support different versions of
NFD that may have been released before or after the
relevant version of NDN-FM. However, this cross-
version support assumes that the NFD Management
API has not changed.

(2) NFD is still under development and iterates rapidly.
Bundling NDN-FM with NFD would force a new re-
lease of NDN-FM for every NFD release, even the
NDN-FM itself does not change.

(3) Binary formats, library versions, and the installation
process differ between platform. Therefore, bundling
NFD would limit the number of platforms that could
be supported without requiring users to recompile
the NDN-FM package.

7 FUTUREWORK
In the current implementation of NDN-FM, we have added
basic security configuration options, such as the adminis-
tration of local identities. We hope to later expand this to
include certificate management through the ndncert pack-
age [15]. We have added the basic structure of these pages to
NDN-FM. However, at the time of writing, the tables in these
pages remain unpopulated and users cannot perform any
management operations using them. In the future, we plan to
complete the implementation of user-friendly management
of this critical security aspect of NDN forwarders.
Moreover, there are some features of the NFD Manage-

ment Protocol that we do not currently support. These in-
clude Content Store management, which allows users to
control the capacity of the Content Store, view its contents
and statistics, erase specific contents from it, and even con-
trol whether content can be admitted to/served from it [6].
While adding this feature would add to the completeness
of our system, we leave it to future work given its lower

relative importance to tasks like face, route, and security
management.
In addition to features controlled through management,

many settings of NFD are controlled via a configuration
file. These include such important options as enabling and
disabling faces for specific protocols, which are controlled
via the forwarder’s “startup configuration”. To edit the for-
warder’s startup configuration, NDN-FM would need to di-
rectly edit the configuration file. This would require that
NDN-FM run with administrative privileges to edit the file,
which it currently does not by default. Additionally, we
would need a way to edit the configuration file program-
matically. Given that the config file is in the INFO format,
we could directly use infoedit for this purpose [8].

In addition to supporting additional features of the NFD
Management Protocol, it would be beneficial to enable the
management of remote NDN forwarder instances with NDN-
FM. This would be helpful in a scenario where a user wished
to manage an intermediate NDN node, such as their home
router. However, in its current state, NDN-FM features no
authentication features, such as a login requirement to view
and change settings. These features have become standard
on wireless router management interfaces due to the high
potential for abuse by unauthorized parties. Such a feature
would be straightforward to add to NDN-FM, but is likely
not necessary in the current design where the administrative
interface is only accessible locally, which already requires
users to be authorized to use the system.

In addition to NFD, another core component of many NDN
hosts, particularly in the core of the network, is a routing
protocol, such as NLSR [20]. Like NFD, NLSR features a
command-line management tool, known as nlsrc, that al-
lows for the management of the routing protocol [21]. In
particular, nlsrc allows for one to view the status of NLSR,
as well as retrieve the current link-state database and rout-
ing table and advertise/withdraw specific prefixes. Adding
management interfaces for NLSR would be an excellent addi-
tion to NDN-FM and would expand its scope beyond simply
managing the forwarder to managing a complete NDN host.

8 CONCLUSION
We have developed the NDN Forwarder Manager (NDN-FM)
to ease the management of NFD, as well as theoretically any
other NDN forwarder implementing the NFD Management
Protocol [18]. Our manager is platform independent, sup-
porting any system that can run an NDN forwarder such as
NFD. This is because it is written in Python 3 and utilizes a
browser-based user interface (BUI).

Currently, NDN-FM can simplify many tasks that are fre-
quently performed when managing an NDN node. In partic-
ular, it can automatically connect to the NDN Testbed [14];

7



Xinyu Ma, Eric Newberry, and Lixia Zhang

manage faces, routes, and the local keychain; and view sta-
tus information about the forwarder. This is provided to
users using a clean, uncluttered interface to enhance their
comprehension of this information.

We evaluated NDN-FM by comparing its functionality and
usage to equivalent command line tools, namely nfdc [19]
and ndnsec [16]. In addition, we enumerated future func-
tionality that we hope to add to NDN-FM to further expand
its feature set.

ACKNOWLEDGMENTS
This work was partially supported by the National Science
Foundation under awards CNS-1629922 and CNS-1719403.
The authors would like to thank Philipp Moll for his help in
proofreading this report.

REFERENCES
[1] A. Afanasyev, J. Burke, T. Refaei, L. Wang, B. Zhang, and L. Zhang.

2018. A Brief Introduction to Named Data Networking. In MILCOM
2018 - 2018 IEEE Military Communications Conference (MILCOM). 1–6.
https://doi.org/10.1109/MILCOM.2018.8599682

[2] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang,
Ilya Moiseenko, Yingdi Yu, Wentao Shang, Yanbiao Li, Spyridon
Mastorakis, Yi Huang, Jerald Paul Abraham, Eric Newberry, Steve
DiBenedetto, Chengyu Fan, Christos Papadopoulos, Davide Pesavento,
Giulio Grassi, Giovanni Pau, Hang Zhang, Tian Song, Haowei
Yuan, Hila Ben Abraham, Patrick Crowley, Syed Obaid Amin, Vince
Lehman, Muktadir Chowdhury, and Lan Wang. 2018. NFD Devel-
oper’s Guide. Technical Report NDN-0021, Revision 10. Named Data
Networking. https://named-data.net/wp-content/uploads/2018/07/
ndn-0021-10-nfd-developer-guide.pdf

[3] Aiohttp Contributors. [n. d.]. aiohttp. https://docs.aiohttp.org/en/
stable/

[4] OpenJS Foundation. [n. d.]. Electron Apps. https://www.electronjs.
org/apps

[5] Xinyu Ma, Zhaoning Kong, and Eric Newberry. [n. d.]. python-ndn.
https://github.com/zjkmxy/python-ndn

[6] Named Data Networking. [n. d.]. Content Store Management. https:
//redmine.named-data.net/projects/nfd/wiki/CsMgmt

[7] Named Data Networking. [n. d.]. Getting Started with NFD. https:
//github.com/named-data/NFD/blob/master/docs/INSTALL.rst

[8] Named Data Networking. [n. d.]. Infoedit: Boost INFO file editor.
https://github.com/NDN-Routing/infoedit

[9] Named Data Networking. [n. d.]. ndn-autoconfig. https://named-data.
net/doc/NFD/current/manpages/ndn-autoconfig.html

[10] Named Data Networking. [n. d.]. NDN Control Center. https:
//github.com/named-data/NDN-Control-Center

[11] Named Data Networking. [n. d.]. ndn-cxx. https://named-data.net/
doc/ndn-cxx/current/

[12] Named Data Networking. [n. d.]. NDN Essential Tools. https:
//github.com/named-data/ndn-tools

[13] Named Data Networking. [n. d.]. ndn-lite. https://ndn-lite.
named-data.net/

[14] Named Data Networking. [n. d.]. NDN Testbed. https://named-data.
net/ndn-testbed/

[15] Named Data Networking. [n. d.]. ndncert. https://github.com/
named-data/ndncert

[16] Named Data Networking. [n. d.]. ndnsec. https://named-data.net/
doc/ndn-cxx/current/manpages/ndnsec.html

[17] Named Data Networking. [n. d.]. NFD - Named Data Networking
Forwarding Daemon. https://named-data.net/doc/NFD/current/

[18] Named Data Networking. [n. d.]. NFD Management Protocol. https:
//redmine.named-data.net/projects/nfd/wiki/Management

[19] Named Data Networking. [n. d.]. nfdc. https://named-data.net/doc/
NFD/current/manpages/nfdc.html

[20] Named Data Networking. [n. d.]. NLSR. https://named-data.net/doc/
NLSR/current/

[21] Named Data Networking. [n. d.]. nlsrc. https://named-data.net/doc/
NLSR/current/manpages/nlsrc.html

[22] National Institute of Standards and Technology. [n. d.]. NDN-DPDK.
https://github.com/usnistgov/ndn-dpdk

[23] Moses Palmér. [n. d.]. pystray. https://github.com/moses-palmer/
pystray

[24] Li Yanbiao, Alexander Afanasyev, Junxiao Shi, Haitao Zhang,
Zhiyi Zhang, Tianxiang Li, Edward Lu, Beichuan Zhang, Lan
Wang, and Lixia Zhang. 2018. NDN Automatic Prefix Propaga-
tion. Technical Report NDN-0045, Revision 1. Named Data Net-
working. https://named-data.net/wp-content/uploads/2018/03/
ndn-0045-1-auto-prefix-propagation.pdf

[25] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan
Zhang, and Lixia Zhang. 2013. A case for stateful forwarding plane.
Computer Communications 36, 7 (2013), 779 – 791. https://doi.org/10.
1016/j.comcom.2013.01.005

[26] Haitao Zhang, Yanbiao Li, Zhiyi Zhang, Alexander Afanasyev, and
Lixia Zhang. 2018. NDN Host Model. SIGCOMM Comput. Commun.
Rev. 48, 3 (September 2018), 35–41. https://doi.org/10.1145/3276799.
3276804

[27] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mas-
torakis, Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An
Overview of Security Support in Named Data Networking. IEEE Com-
munications Magazine 56, 11 (2018), 62–68.

8

https://doi.org/10.1109/MILCOM.2018.8599682
https://named-data.net/wp-content/uploads/2018/07/ndn-0021-10-nfd-developer-guide.pdf
https://named-data.net/wp-content/uploads/2018/07/ndn-0021-10-nfd-developer-guide.pdf
https://docs.aiohttp.org/en/stable/
https://docs.aiohttp.org/en/stable/
https://www.electronjs.org/apps
https://www.electronjs.org/apps
https://github.com/zjkmxy/python-ndn
https://redmine.named-data.net/projects/nfd/wiki/CsMgmt
https://redmine.named-data.net/projects/nfd/wiki/CsMgmt
https://github.com/named-data/NFD/blob/master/docs/INSTALL.rst
https://github.com/named-data/NFD/blob/master/docs/INSTALL.rst
https://github.com/NDN-Routing/infoedit
https://named-data.net/doc/NFD/current/manpages/ndn-autoconfig.html
https://named-data.net/doc/NFD/current/manpages/ndn-autoconfig.html
https://github.com/named-data/NDN-Control-Center
https://github.com/named-data/NDN-Control-Center
https://named-data.net/doc/ndn-cxx/current/
https://named-data.net/doc/ndn-cxx/current/
https://github.com/named-data/ndn-tools
https://github.com/named-data/ndn-tools
https://ndn-lite.named-data.net/
https://ndn-lite.named-data.net/
https://named-data.net/ndn-testbed/
https://named-data.net/ndn-testbed/
https://github.com/named-data/ndncert
https://github.com/named-data/ndncert
https://named-data.net/doc/ndn-cxx/current/manpages/ndnsec.html
https://named-data.net/doc/ndn-cxx/current/manpages/ndnsec.html
https://named-data.net/doc/NFD/current/
https://redmine.named-data.net/projects/nfd/wiki/Management
https://redmine.named-data.net/projects/nfd/wiki/Management
https://named-data.net/doc/NFD/current/manpages/nfdc.html
https://named-data.net/doc/NFD/current/manpages/nfdc.html
https://named-data.net/doc/NLSR/current/
https://named-data.net/doc/NLSR/current/
https://named-data.net/doc/NLSR/current/manpages/nlsrc.html
https://named-data.net/doc/NLSR/current/manpages/nlsrc.html
https://github.com/usnistgov/ndn-dpdk
https://github.com/moses-palmer/pystray
https://github.com/moses-palmer/pystray
https://named-data.net/wp-content/uploads/2018/03/ndn-0045-1-auto-prefix-propagation.pdf
https://named-data.net/wp-content/uploads/2018/03/ndn-0045-1-auto-prefix-propagation.pdf
https://doi.org/10.1016/j.comcom.2013.01.005
https://doi.org/10.1016/j.comcom.2013.01.005
https://doi.org/10.1145/3276799.3276804
https://doi.org/10.1145/3276799.3276804

	Abstract
	1 Introduction
	2 Background
	2.1 NDN Software
	2.2 NFD Configuration

	3 Design
	3.1 Design Goals
	3.2 System Overview
	3.3 Supported Features

	4 Implementation
	4.1 Backend Module
	4.2 System Tray Module
	4.3 Usage
	4.4 System Requirements

	5 Usability Evaluation
	5.1 Face Management
	5.2 Route Management
	5.3 Keychain Management

	6 Discussion
	6.1 Browser User Interface
	6.2 Decoupling Management from NFD

	7 Future Work
	8 Conclusion
	References

